Browsing by Subject "demography"

Sort by: Order: Results:

Now showing items 1-9 of 9
  • Tarkiainen, Lasse; Moustgaard, Heta; Korhonen, Kaarina; Noordzij, J. Mark; Beenackers, Marielle A.; van Lenthe, Frank J.; Burstrom, Bo; Martikainen, Pekka (2021)
    Background Research evidence on the association between neighbourhood characteristics and individual mental health at older ages is inconsistent, possibly due to heterogeneity in the measurement of mental-health outcomes, neighbourhood characteristics and confounders. Register-based data enabled us to avoid these problems in this longitudinal study on the associations between socioeconomic and physical neighbourhood characteristics and individual antidepressant use in three national contexts. Methods We used register-based longitudinal data on the population aged 50+ from Turin (Italy), Stockholm (Sweden), and the nine largest cities in Finland linked to satellite-based land-cover data. This included individual-level information on sociodemographic factors and antidepressant use, and on neighbourhood socioeconomic characteristics, levels of urbanicity, green space and land-use mix (LUM). We assessed individual-level antidepressant use over 6 years in 2001-2017 using mixed-effects logistic regression. Results A higher neighbourhood proportion of low-educated individuals predicted lower odds for antidepressant use in Turin and Stockholm when individual-level sociodemographic factors were controlled for. Urbanicity predicted increased antidepressant use in Stockholm (OR=1.02; 95% CI 1.01 to 1.03) together with more LUM (OR=1.03; 1.01-1.05) and population density (OR=1.08; 1.05-1.10). The two latter characteristics also predicted increased antidepressant use in the Finnish cities (OR=1.05; 1.02-1.08 and OR=1.14; 1.02-1.28, respectively). After accounting for all studied neighbourhood and individual characteristics of the residents, the neighbourhoods still varied by odds of antidepressant use. Conclusions Overall, the associations of neighbourhood socioeconomic and physical characteristics with older people's antidepressant use were small and inconsistent. However, we found modest evidence that dense physical urban environments predicted higher antidepressant use among older people in Stockholm and the Finnish cities.
  • Greiser, Caroline; Hylander, Kristoffer; Meineri, Eric; Luoto, Miska; Ehrlen, Johan (2020)
    The role of climate in determining range margins is often studied using species distribution models (SDMs), which are easily applied but have well-known limitations, e.g. due to their correlative nature and colonization and extinction time lags. Transplant experiments can give more direct information on environmental effects, but often cover small spatial and temporal scales. We simultaneously applied a SDM using high-resolution spatial predictors and an integral projection (demographic) model based on a transplant experiment at 58 sites to examine the effects of microclimate, light and soil conditions on the distribution and performance of a forest herb, Lathyrus vernus, at its cold range margin in central Sweden. In the SDM, occurrences were strongly associated with warmer climates. In contrast, only weak effects of climate were detected in the transplant experiment, whereas effects of soil conditions and light dominated. The higher contribution of climate in the SDM is likely a result from its correlation with soil quality, forest type and potentially historic land use, which were unaccounted for in the model. Predicted habitat suitability and population growth rate, yielded by the two approaches, were not correlated across the transplant sites. We argue that the ranking of site habitat suitability is probably more reliable in the transplant experiment than in the SDM because predictors in the former better describe understory conditions, but that ranking might vary among years, e.g. due to differences in climate. Our results suggest that L. vernus is limited by soil and light rather than directly by climate at its northern range edge, where conifers dominate forests and create suboptimal conditions of soil and canopy-penetrating light. A general implication of our study is that to better understand how climate change influences range dynamics, we should not only strive to improve existing approaches but also to use multiple approaches in concert.
  • Morrison, Catriona A.; Butler, Simon J.; Robinson, Robert A.; Clark, Jacquie A.; Arizaga, Juan; Aunins, Ainars; Balta, Oriol; Cepak, Jaroslav; Chodkiewicz, Tomasz; Escandell, Virginia; Foppen, Ruud P. B.; Gregory, Richard D.; Husby, Magne; Jiguet, Frederic; Kålås, John Atle; Lehikoinen, Aleksi; Lindström, Ake; Moshøj, Charlotte M.; Nagy, Karoly; Nebot, Arantza Leal; Piha, Markus; Reif, Jiri; Sattler, Thomas; Skorpilova, Jana; Szep, Tibor; Teufelbauer, Norbert; Thorup, Kasper; van Turnhout, Chris; Wenninger, Thomas; Gill, Jennifer A. (2021)
    Wildlife conservation policies directed at common and widespread, but declining, species are difficult to design and implement effectively, as multiple environmental changes are likely to contribute to population declines. Conservation actions ultimately aim to influence demographic rates, but targeting actions towards feasible improvements in these is challenging in widespread species with ranges that encompass a wide range of environmental conditions. Across Europe, sharp declines in the abundance of migratory landbirds have driven international calls for action, but actions that could feasibly contribute to population recovery have yet to be identified. Targeted actions to improve conditions on poor-quality sites could be an effective approach, but only if local conditions consistently influence local demography and hence population trends. Using long-term measures of abundance and demography of breeding birds at survey sites across Europe, we show that co-occurring species with differing migration behaviours have similar directions of local population trends and magnitudes of productivity, but not survival rates. Targeted actions to boost local productivity within Europe, alongside large-scale (non-targeted) environmental protection across non-breeding ranges, could therefore help address the urgent need to halt migrant landbird declines. Such demographic routes to recovery are likely to be increasingly needed to address global wildlife declines.
  • Pajunen, T.; Vuori, E.; Lunetta, P. (2018)
    Background: Post-mortem (PM) ethanol production may hamper the interpretation of blood alcohol concentration (BAC) in victims of drowning. Different exclusion criteria (e.g. cases with low BAC or with protracted interval between death and toxicological analysis) have been proposed with no factual figures to reduce the potential bias due to PM ethanol production when examining the prevalence rates for alcohol-related drowning. The aim of this study is to verify the extent to which PM alcohol production may affect the accuracy of studies on drowning and alcohol. Findings: Unintentional fatal drowning cases (n = 967) for which a full medico-legal autopsy and toxicological analysis was performed, in Finland, from 2000 to 2013, and relevant variables (demographic data of the victims, month of incident, PM submersion time, blood alcohol concentration, urine alcohol concentration (UAC), vitreous humour alcohol concentration (VAC) were available. Overall, out of 967 unintentional drownings, 623 (64.4%) were positive for alcohol (BAC > 0 mg/dL), 595 (61.5%) had a BAC ≥ 50 mg/dL, and 567 (58.6%) a BAC ≥ 100 mg/dL. Simultaneous measurements, in each victim, of BAC, UAC, and VAC revealed PM ethanol production in only 4 victims (BAC: 25 mg/dL – 48 mg/dL). These false positive cases represented 0.4% of drownings with BAC > 0 mg/dL and 14.3% of drownings with BAC > 0 mg/dL and <50 mg/dL. Conclusions: The present study suggests that PM ethanol production has a limited impact on research addressing the prevalence rate for alcohol-related drowning and that the use of too rigorous exclusion criteria, such as those previously recommended, may led to a significant underestimation of actual alcohol-positive drowning cases. © 2018, The Author(s).
  • Global Burden of Disease Self-Harm Collaboration; Orpana, H.M.; Doku, D.T.; Meretoja, T.J.; Shiri, R.; Vasankari, T. (2019)
    Objectives To use the estimates from the Global Burden of Disease Study 2016 to describe patterns of suicide mortality globally, regionally, and for 195 countries and territories by age, sex, and Socio-demographic index, and to describe temporal trends between 1990 and 2016. Design Systematic analysis. Main outcome measures Crude and age standardised rates from suicide mortality and years of life lost were compared across regions and countries, and by age, sex, and Socio-demographic index (a composite measure of fertility, income, and education). Results The total number of deaths from suicide increased by 6.7% (95% uncertainty interval 0.4% to 15.6%) globally over the 27 year study period to 817 000 (762 000 to 884 000) deaths in 2016. However, the age standardised mortality rate for suicide decreased by 32.7% (27.2% to 36.6%) worldwide between 1990 and 2016, similar to the decline in the global age standardised mortality rate of 30.6%. Suicide was the leading cause of age standardised years of life lost in the Global Burden of Disease region of high income Asia Pacific and was among the top 10 leading causes in eastern Europe, central Europe, western Europe, central Asia, Australasia, southern Latin America, and high income North America. Rates for men were higher than for women across regions, countries, and age groups, except for the 15 to 19 age group. There was variation in the female to male ratio, with higher ratios at lower levels of Socio-demographic index. Women experienced greater decreases in mortality rates (49.0%, 95% uncertainty interval 42.6% to 54.6%) than men (23.8%, 15.6% to 32.7%). Conclusions Age standardised mortality rates for suicide have greatly reduced since 1990, but suicide remains an important contributor to mortality worldwide. Suicide mortality was variable across locations, between sexes, and between age groups. Suicide prevention strategies can be targeted towards vulnerable populations if they are informed by variations in mortality rates. © Published by the BMJ Publishing Group Limited.
  • Tallavaara, Miikka; Luoto, Miska; Korhonen, Natalia; Järvinen, Heikki; Seppä, Heikki (2015)
    The severe cooling and the expansion of the ice sheets during the Last Glacial Maximum (LGM), 27,000-19,000 y ago (27-19 ky ago) had a major impact on plant and animal populations, including humans. Changes in human population size and range have affected our genetic evolution, and recent modeling efforts have reaffirmed the importance of population dynamics in cultural and linguistic evolution, as well. However, in the absence of historical records, estimating past population levels has remained difficult. Here we show that it is possible to model spatially explicit human population dynamics from the pre-LGM at 30 ky ago through the LGM to the Late Glacial in Europe by using climate envelope modeling tools and modern ethnographic datasets to construct a population calibration model. The simulated range and size of the human population correspond significantly with spatiotemporal patterns in the archaeological data, suggesting that climate was a major driver of population dynamics 30-13 ky ago. The simulated population size declined from about 330,000 people at 30 ky ago to a minimum of 130,000 people at 23 ky ago. The Late Glacial population growth was fastest during Greenland interstadial 1, and by 13 ky ago, therewere almost 410,000 people in Europe. Even during the coldest part of the LGM, the climatically suitable area for human habitation remained unfragmented and covered 36% of Europe.
  • Fitak, Robert R.; Mohandesan, Elmira; Corander, Jukka; Burger, Pamela A. (2016)
    The single-humped dromedary (Camelus dromedarius) is the most numerous and widespread of domestic camel species and is a significant source of meat, milk, wool, transportation and sport for millions of people. Dromedaries are particularly well adapted to hot, desert conditions and harbour a variety of biological and physiological characteristics with evolutionary, economic and medical importance. To understand the genetic basis of these traits, an extensive resource of genomic variation is required. In this study, we assembled at 653 coverage, a 2.06 Gb draft genome of a female dromedary whose ancestry can be traced to an isolated population from the Canary Islands. We annotated 21 167 protein-coding genes and estimated similar to 33.7% of the genome to be repetitive. A comparison with the recently published draft genome of an Arabian dromedary resulted in 1.91 Gb of aligned sequence with a divergence of 0.095%. An evaluation of our genome with the reference revealed that our assembly contains more error-free bases (91.2%) and fewer scaffolding errors. We identified similar to 1.4 million single-nucleotide polymorphisms with a mean density of 0.71 x 10(-3) per base. An analysis of demographic history indicated that changes in effective population size corresponded with recent glacial epochs. Our de novo assembly provides a useful resource of genomic variation for future studies of the camel's adaptations to arid environments and economically important traits. Furthermore, these results suggest that draft genome assemblies constructed with only two differently sized sequencing libraries can be comparable to those sequenced using additional library sizes, highlighting that additional resources might be better placed in technologies alternative to short-read sequencing to physically anchor scaffolds to genome maps.
  • Aben, Job; Bocedi, Greta; Palmer, Stephen C. F.; Pellikka, Petri; Strubbe, Diederik; Hallmann, Caspar; Travis, Justin M. J.; Lens, Luc; Matthysen, Erik (2016)
    As biodiversity hotspots are often characterized by high human population densities, implementation of conservation management practices that focus only on the protection and enlargement of pristine habitats is potentially unrealistic. An alternative approach to curb species extinction risk involves improving connectivity among existing habitat patches. However, evaluation of spatially explicit management strategies is challenging, as predictive models must account for the process of dispersal, which is difficult in terms of both empirical data collection and modelling. Here, we use a novel, individual-based modelling platform that couples demographic and mechanistic dispersal models to evaluate the effectiveness of realistic management scenarios tailored to conserve forest birds in a highly fragmented biodiversity hotspot. Scenario performance is evaluated based on the spatial population dynamics of a well-studied forest bird species. The largest population increase was predicted to occur under scenarios increasing habitat area. However, the effectiveness was sensitive to spatial planning. Compared to adding one large patch to the habitat network, adding several small patches yielded mixed benefits: although overall population sizes increased, specific newly created patches acted as dispersal sinks, which compromised population persistence in some existing patches. Increasing matrix connectivity by the creation of stepping stones is likely to result in enhanced dispersal success and occupancy of smaller patches.Synthesis and applications. We show that the effectiveness of spatial management is strongly driven by patterns of individual dispersal across landscapes. For species conservation planning, we advocate the use of models that incorporate adequate realism in demography and, particularly, in dispersal behaviours.
  • Lee, Kyung Min; Ranta, Pertti; Saarikivi, Jarmo; Kutnar, Lado; Vreš, Branko; Dzhus, Maxim; Mutanen, Marko; Kvist, Laura (2020)
    Species occupying habitats subjected to frequent natural and/or anthropogenic changes are a challenge for conservation management. We studied one such species, Viola uliginosa, an endangered perennial wetland species typically inhabiting sporadically flooded meadows alongside rivers/lakes. In order to estimate genomic diversity, population structure, and history, we sampled five sites in Finland, three in Estonia, and one each in Slovenia, Belarus, and Poland using genomic SNP data with double-digest restriction site-associated DNA sequencing (ddRAD-seq). We found monophyletic populations, high levels of inbreeding (mean population F-SNP = 0.407-0.945), low effective population sizes (N-e = 0.8-50.9), indications of past demographic expansion, and rare long-distance dispersal. Our results are important in implementing conservation strategies for V. uliginosa, which should include founding of seed banks, ex situ cultivations, and reintroductions with individuals of proper origin, combined with continuous population monitoring and habitat management.