Browsing by Subject "deposition"

Sort by: Order: Results:

Now showing items 1-7 of 7
  • Mori, Tatsuhiro; Goto-Azuma, Kumiko; Kondo, Yutaka; Ogawa-Tsukagawa, Yoshimi; Miura, Kazuhiko; Hirabayashi, Motohiro; Oshima, Naga; Koike, Makoto; Kupiainen, Kaarle; Moteki, Nobuhiro; Ohata, Sho; Sinha, P.R.; Sugiura, Konosuke; Aoki, Teruo; Schneebeli, Martin; Steffen, Konrad; Sato, Atsushi; Tsushima, Akane; Makarov, Vladimir; Omiya, Satoshi; Sugimoto, Atsuko; Takano, Shinya; Nagatsuka, Naoko (Wiley & Sons, 2019)
    Journal of Geophysical Research : Atmospheres
    Black carbon (BC) deposited on snow lowers its albedo, potentially contributing to warming in the Arctic. Atmospheric distributions of BC and inorganic aerosols, which contribute directly and indirectly to radiative forcing, are also greatly influenced by depositions. To quantify these effects, accurate measurement of the spatial distributions of BC and ionic species representative of inorganic aerosols (ionic species hereafter) in snowpack in various regions of the Arctic is needed, but few such measurements are available. We measured mass concentrations of size-resolved BC (CMBC) and ionic species in snowpack by using a single-particle soot photometer and ion chromatography, respectively, over Finland, Alaska, Siberia, Greenland, and Spitsbergen during early spring in 2012–2016. Total BC mass deposited per unit area (DEPMBC) during snow accumulation periods was derived from CMBC and snow water equivalent (SWE). Our analyses showed that the spatial distributions of anthropogenic BC emission flux, total precipitable water, and topography strongly influenced latitudinal variations of CMBC, BC size distributions, SWE, and DEPMBC. The average size distributions of BC in Arctic snowpack shifted to smaller sizes with decreasing CMBC due to an increase in the removal efficiency of larger BC particles during transport from major sources. Our measurements of CMBC were lower by a factor of ~13 than previous measurements made with an Integrating Sphere/Integrating Sandwich spectrophotometer due mainly to interference from coexisting non-BC particles such as mineral dust. The SP2 data presented here will be useful for constraining climate models that estimate the effects of BC on the Arctic climate.
  • Vuoriheimo, Tomi; Hakola, Antti; Likonen, Jari; Brezinsek, Sebastijan; Dittmar, Timo; Mayer, Matej; Dhard, Chandra Prakash; Naujoks, Dirk; Tuomisto, Filip; The W7-X Team (2021)
    Carbon impurity transport and deposition were investigated in the Wendelstein 7-X stellarator by injecting isotopically labelled methane ((CH4)-C-13) into the edge plasma during the last plasma operations of its Operational Phase (OP) 1.2B experimental campaign. C-13 deposition was measured by secondary ion mass spectrometry (SIMS) on three upper divertor tiles located on the opposite side of the vessel to the(13)CH(4) inlet. The highest C-13 inventories were found as stripe-like patterns on both sides of the different strike lines. These high deposition areas were also analysed for their impurity contents and the depth profiles of the main elements in the layers. Layered deposition of different impurity elements such as Cr, Ni, Mo and B was found to reflect various events such as high metallic impurities during the OP1.2A and three boronizations carried out during OP1.2B.
  • JET Contributors; Widdowson, A.; Heinola, K. (2020)
    Fuel retention and material migration results from JET ITER-like wall beryllium limiter tiles are presented for three operating periods. Ion beam analysis results support the general picture of erosion during limiter configurations with local deposition on tile ends far into the scrape off layer. Similar trends of fuel concentrations are observed in all JET operating periods; (i) low on surfaces exposed to high heat flux and erosion and (ii) higher in deposits. The pattern of fuel retention and deposition correlates with heat flux and distribution of limiter plasmas touching inner and outer limiters. The D/Be ratio in the thickest deposit is similar to 0.01. Global fuel retention attributed to limiters is
  • Braaten, Hans Fredrik Veiteberg; Akerblom, Staffan; Kahilainen, Kimmo K.; Rask, Martti; Vuorenmaa, Jussi; Mannio, Jaakko; Malinen, Tommi; Lydersen, Espen; Poste, Amanda E.; Amundsen, Per-Arne; Kashulin, Nicholas; Kashulina, Tatiana; Terentyev, Petr; Christensen, Guttorm; de Wit, Heleen A. (American Chemical Society, 2019)
    Environmental Science & Technology 2019 53 (4), 1834-1843
    Temporally (1965–2015) and spatially (55°–70°N) extensive records of total mercury (Hg) in freshwater fish showed consistent declines in boreal and subarctic Fennoscandia. The database contains 54 560 fish entries (n: pike > perch ≫ brown trout > roach ≈ Arctic charr) from 3132 lakes across Sweden, Finland, Norway, and Russian Murmansk area. 74% of the lakes did not meet the 0.5 ppm limit to protect human health. However, after 2000 only 25% of the lakes exceeded this level, indicating improved environmental status. In lakes where local pollution sources were identified, pike and perch Hg concentrations were significantly higher between 1965 and 1990 compared to values after 1995, likely an effect of implemented reduction measures. In lakes where Hg originated from long-range transboundary air pollution (LRTAP), consistent Hg declines (3–7‰ per year) were found for perch and pike in both boreal and subarctic Fennoscandia, suggesting common environmental controls. Hg in perch and pike in LRTAP lakes showed minimal declines with latitude, suggesting that drivers affected by temperature, such as growth dilution, counteracted Hg loading and food web exposure. We recommend that future fish Hg monitoring sampling design should include repeated sampling and collection of pollution history, water chemistry, fish age, and stable isotopes to enable evaluation of emission reduction policies.
  • Heinola, K.; Likonen, J.; Ahlgren, T.; Brezinsek, S.; De Temmerman, G.; Jepu, I.; Matthews, G. F.; Pitts, R. A.; Widdowson, A.; JET Contributors (2017)
    The fuel outgassing efficiency from plasma-facing components exposed in JET-ILW has been studied at ITER-relevant baking temperatures. Samples retrieved from the W divertor and Be main chamber were annealed at 350 and 240 degrees C, respectively. Annealing was performed with thermal desoprtion spectrometry (TDS) for 0, 5 and 15 h to study the deuterium removal effectiveness at the nominal baking temperatures. The remained fraction was determined by emptying the samples fully of deuterium by heating W and Be samples up to 1000 and 775 degrees C, respectively. Results showed the deposits in the divertor having an increasing effect to the remaining retention at temperatures above baking. Highest remaining fractions 54 and 87% were observed with deposit thicknesses of 10 and 40 mu m, respectively. Substantially high fractions were obtained in the main chamber samples from the deposit-free erosion zone of the limiter midplane, in which the dominant fuel retention mechanism is via implantation: 15 h annealing resulted in retained deuterium higher than 90%. TDS results from the divertor were simulated with TMAP7 calculations. The spectra were modelled with three deuterium activation energies resulting in good agreement with the experiments.
  • Ruppel, Meri; Eckhardt, Sabine; Pesonen, Antto; Mizohata, Kenichiro; Oinonen, Markku; Stohl, Andreas; Andersson, August; Jones, Vivienne; Manninen, Sirkku; Gustafsson, Örjan (2021)
    Black carbon (BC) particles contribute to climate warming by heating the atmosphere and reducing the albedo of snow/ice surfaces. The available Arctic BC deposition records are restricted to the Atlantic and North American sectors, for which previous studies suggest considerable spatial differences in trends. Here, we present first long-term BC deposition and radiocarbon-based source apportionment data from Russia using four lake sediment records from western Arctic Russia, a region influenced by BC emissions from oil and gas production. The records consistently indicate increasing BC fluxes between 1800 and 2014. The radiocarbon analyses suggest mainly (similar to 70%) biomass sources for BC with fossil fuel contributions peaking around 1960-1990. Backward calculations with the atmospheric transport model FLEXPART show emission source areas and indicate that modeled BC deposition between 1900 and 1999 is largely driven by emission trends. Comparison of observed and modeled data suggests the need to update anthropogenic BC emission inventories for Russia, as these seem to underestimate Russian BC emissions and since 1980s potentially inaccurately portray their trend. Additionally, the observations may indicate underestimation of wildfire emissions in inventories. Reliable information on BC deposition trends and sources is essential for design of efficient and effective policies to limit climate warming.
  • Kupiainen, K.; Tervahattu, H. (Kluwer Academic Publishers, 2004)
    Springtime urban road dust forms one of the most serious problems regarding air pollution in Finland. The composition and origin of springtime dust was studied in southern Finland with two different methods. Suspended particles (PM10 and TSP) were collected with high volume particle samplers and particle deposition was collected with moss bags. The composition of the PM1.5−10 fraction was studied using individual particle analysis with SEM/EDX. The deposition in the moss bags was analysed with ICP-MS. The results showed that during the study period, approximately 10% of both PM1.5−10 particles and the deposition originated from sanding. Other sources in the springtime PM1.5−10 were e.g. asphalt aggregate or soil and combustion processes. It can be concluded that sanding produced a relatively small amount of particulate matter under the investigated circumstances.