Browsing by Subject "digital pathology"

Sort by: Order: Results:

Now showing items 1-5 of 5
  • Slik, Khadija; Blom, Sami; Turkki, Riku; Välimäki, Katja; Kurki, Samu; Mustonen, Harri; Haglund, Caj; Carpén, Olli; Kallioniemi, Olli; Korkeila, Eija; Sundström, Jari; Pellinen, Teijo (2019)
    Tumour budding predicts survival of stage II colorectal cancer (CRC) and has been suggested to be associated with epithelial-to-mesenchymal transition (EMT). However, the underlying molecular changes of tumour budding remain poorly understood. Here, we performed multiplex immunohistochemistry (mIHC) to phenotypically profile tumours using known EMT-associated markers: E-cadherin (adherence junctions), integrin beta 4 (ITGB4; basement membrane), ZO-1 (tight junctions), and pan-cytokeratin. A subpopulation of patients showed high ITGB4 expression in tumour buds, and this coincided with a switch of ITGB4 localisation from the basal membrane of intact epithelium to the cytoplasm of budding cells. Digital image analysis demonstrated that tumour budding with high ITGB4 expression in tissue microarray (TMA) cores correlated with tumour budding assessed from haematoxylin and eosin (H&E) whole sections and independently predicted poor disease-specific survival in two independent stage II CRC cohorts (hazard ratio [HR] = 4.50 (95% confidence interval [CI] = 1.50-13.5), n = 232; HR = 3.52 (95% CI = 1.30-9.53), n = 72). Furthermore, digitally obtained ITGB4-high bud count in random TMA cores was better associated with survival outcome than visual tumour bud count in corresponding H&E-stained samples. In summary, the mIHC-based phenotypic profiling of human tumour tissue shows strong potential for the molecular characterisation of tumour biology and for the discovery of novel prognostic biomarkers.
  • Laivuori, Mirjami; Tolva, Johanna; Lokki, A. Inkeri; Linder, Nina; Lundin, Johan; Paakkanen, Riitta; Albäck, Anders; Venermo, Maarit; Mäyränpää, Mikko I.; Lokki, Marja-Liisa; Sinisalo, Juha (2020)
    Lamellar metaplastic bone, osteoid metaplasia (OM), is found in atherosclerotic plaques, especially in the femoral arteries. In the carotid arteries, OM has been documented to be associated with plaque stability. This study investigated the clinical impact of OM load in femoral artery plaques of patients with lower extremity artery disease (LEAD) by using a deep learning-based image analysis algorithm. Plaques from 90 patients undergoing endarterectomy of the common femoral artery were collected and analyzed. After decalcification and fixation, 4-μm-thick longitudinal sections were stained with hematoxylin and eosin, digitized, and uploaded as whole-slide images on a cloud-based platform. A deep learning-based image analysis algorithm was trained to analyze the area percentage of OM in whole-slide images. Clinical data were extracted from electronic patient records, and the association with OM was analyzed. Fifty-one (56.7%) sections had OM. Females with diabetes had a higher area percentage of OM than females without diabetes. In male patients, the area percentage of OM inversely correlated with toe pressure and was significantly associated with severe symptoms of LEAD including rest pain, ulcer, or gangrene. According to our results, OM is a typical feature of femoral artery plaques and can be quantified using a deep learning-based image analysis method. The association of OM load with clinical features of LEAD appears to differ between male and female patients, highlighting the need for a gender-specific approach in the study of the mechanisms of atherosclerotic disease. In addition, the role of plaque characteristics in the treatment of atherosclerotic lesions warrants further consideration in the future.
  • Rodrigues, Joana M.; Hassan, May; Freiburghaus, Catja; Eskelund, Christian W.; Geisler, Christian; Räty, Riikka; Kolstad, Arne; Sundstrom, Christer; Glimelius, Ingrid; Gronbaek, Kirsten; Kwiecinska, Anna; Porwit, Anna; Jerkeman, Mats; Ek, Sara (2020)
    Survival for patients diagnosed with mantle cell lymphoma (MCL) has improved drastically in recent years. However, patients carrying mutations in tumour protein p53 (TP53) do not benefit from modern chemotherapy-based treatments and have poor prognosis. Thus, there is a clinical need to identify missense mutations through routine analysis to enable patient stratification. Sequencing is not widely implemented in clinical practice for MCL, and immunohistochemistry (IHC) is a feasible alternative to identify high-risk patients. The aim of the present study was to investigate the accuracy of p53 as a tool to identify patients withTP53missense mutations and the prognostic impact of overexpression and mutations in a Swedish population-based cohort. In total, 317 cases were investigated using IHC and 255 cases were sequenced, enabling analysis of p53 andTP53status among 137 cases divided over the two-cohort investigated. The accuracy of predicting missense mutations from protein expression was 82%, with sensitivity at 82% and specificity at 100% in paired samples. We further show the impact of p53 expression andTP53mutations on survival (hazard ratio of 3 center dot 1 in univariate analysis for both), and the association to risk factors, such as high MCL International Prognostic Index, blastoid morphology and proliferation, in a population-based setting.
  • Howat, William J; Blows, Fiona M; Provenzano, Elena; Brook, Mark N; Morris, Lorna; Gazinska, Patrycja; Johnson, Nicola; McDuffus, Leigh-Anne; Miller, Jodi; Sawyer, Elinor J; Pinder, Sarah; van Deurzen, Carolien H M; Jones, Louise; Sironen, Reijo; Visscher, Daniel; Caldas, Carlos; Daley, Frances; Coulson, Penny; Broeks, Annegien; Sanders, Joyce; Wesseling, Jelle; Nevanlinna, Heli; Fagerholm, Rainer; Blomqvist, Carl; Heikkilä, Päivi; Ali, H Raza; Dawson, Sarah-Jane; Figueroa, Jonine; Lissowska, Jolanta; Brinton, Louise; Mannermaa, Arto; Kataja, Vesa; Kosma, Veli-Matti; Cox, Angela; Brock, Ian W; Cross, Simon S; Reed, Malcolm W; Couch, Fergus J; Olson, Janet E; Devillee, Peter; Mesker, Wilma E; Seyaneve, Caroline M; Hollestelle, Antoinette; Benitez, Javier; Perez, Jose Ignacio Arias; Menéndez, Primitiva; Bolla, Manjeet K; Easton, Douglas F; Schmidt, Marjanka K; Pharoah, Paul D; Sherman, Mark E; García-Closas, Montserrat (2015)
    Breast cancer risk factors and clinical outcomes vary by tumour marker expression. However, individual studies often lack the power required to assess these relationships, and large-scale analyses are limited by the need for high throughput, standardized scoring methods. To address these limitations, we assessed whether automated image analysis of immunohistochemically stained tissue microarrays can permit rapid, standardized scoring of tumour markers from multiple studies. Tissue microarray sections prepared in nine studies containing 20 263 cores from 8267 breast cancers stained for two nuclear (oestrogen receptor, progesterone receptor), two membranous (human epidermal growth factor receptor 2 and epidermal growth factor receptor) and one cytoplasmic (cytokeratin 5/6) marker were scanned as digital images. Automated algorithms were used to score markers in tumour cells using the Ariol system. We compared automated scores against visual reads, and their associations with breast cancer survival. Approximately 65–70% of tissue microarray cores were satisfactory for scoring. Among satisfactory cores, agreement between dichotomous automated and visual scores was highest for oestrogen receptor (Kappa = 0.76), followed by human epidermal growth factor receptor 2 (Kappa = 0.69) and progesterone receptor (Kappa = 0.67). Automated quantitative scores for these markers were associated with hazard ratios for breast cancer mortality in a dose-response manner. Considering visual scores of epidermal growth factor receptor or cytokeratin 5/6 as the reference, automated scoring achieved excellent negative predictive value (96–98%), but yielded many false positives (positive predictive value = 30–32%). For all markers, we observed substantial heterogeneity in automated scoring performance across tissue microarrays. Automated analysis is a potentially useful tool for large-scale, quantitative scoring of immunohistochemically stained tissue microarrays available in consortia. However, continued optimization, rigorous marker-specific quality control measures and standardization of tissue microarray designs, staining and scoring protocols is needed to enhance results.
  • Holmström, Oscar; Linder, Nina; Lundin, Mikael; Moilanen, Hannu; Suutala, Antti; Turkki, Riku; Joensuu, Heikki; Isola, Jorma; Diwan, Vinod; Lundin, Johan (Helsingin yliopisto, 2015)
    Introduction: A significant barrier to medical diagnostics in low-resource environments is the lack of medical care and equipment. Here we present a low-cost, cloud-connected digital microscope for applications at the point-of-care. We evaluate the performance of the device in the digital assessment of estrogen receptor-alpha (ER) expression in breast cancer samples. Studies suggest computer-assisted analysis of tumor samples digitized with whole slide-scanners may be comparable to manual scoring, here we study whether similar results can be obtained with the device presented. Materials and methods: A total of 170 samples of human breast carcinoma, immunostained for ER expression, were digitized with a high-end slide-scanner and the point-of-care microscope. Corresponding regions from the samples were extracted, and ER status was determined visually and digitally. Samples were classified as ER negative (<1% ER positivity) or positive, and further into weakly (1-10% positivity) and strongly positive. Interobserver agreement (Cohen's kappa) was measured and correlation coefficients (Pearson's product-momentum) were calculated for comparison of the methods. Results: Correlation and interobserver agreement (r = 0.98, p < 0.001, kappa = 0.84, CI95% = 0.75-0.94) were strong in the results from both devices. Concordance of the point-of-care microscope and the manual scoring was good (r = 0.94, p < 0.001, kappa = 0.71, CI95% = 0.61-0.80), and comparable to the concordance between the slide scanner and manual scoring (r = 0.93, p < 0.001, kappa = 0.69, CI95% = 0.60-0.78). Fourteen (8%) discrepant cases between manual and device-based scoring were present with the slide scanner, and 16 (9%) with the point-of-care microscope, all representing samples of low ER expression. Conclusions: Tumor ER status can be accurately quantified with a low-cost imaging device and digital image-analysis, with results comparable to conventional computer-assisted or manual scoring. This technology could potentially be expanded for other histopathological applications at the point-of-care.