Browsing by Subject "dinoflagellates"

Sort by: Order: Results:

Now showing items 1-3 of 3
  • Camarena‐Gómez, María Teresa; Ruiz‐González, Clara; Piiparinen, Jonna; Lipsewers, Tobias; Sobrino, Cristina; Logares, Ramiro; Spilling, Kristian (American Society of Limnology and Oceanography, 2021)
    Limnology and Oceanography 66: 1, 255-271
    In parts of the Baltic Sea, the phytoplankton spring bloom communities, commonly dominated by diatoms, are shifting toward the co-occurrence of diatoms and dinoflagellates. Although phytoplankton are known to shape the composition and function of associated bacterioplankton communities, the potential bacterial responses to such a decrease of diatoms are unknown. Here we explored the changes in bacterial communities and heterotrophic production during the spring bloom in four consecutive spring blooms across several sub-basins of the Baltic Sea and related them to changes in environmental variables and in phytoplankton community structure. The taxonomic structure of bacterioplankton assemblages was partially explained by salinity and temperature but also linked to the phytoplankton community. Higher carbon biomass of the diatoms Achnanthes taeniata, Skeletonema marinoi, Thalassiosira levanderi, and Chaetoceros spp. was associated with more diverse bacterial communities dominated by copiotrophic bacteria (Flavobacteriia, Gammaproteobacteria, and Betaproteobacteria) and higher bacterial production. During dinoflagellate dominance, bacterial production was low and bacterial communities were dominated by Alphaproteobacteria, mainly SAR11. Our results suggest that increases in dinoflagellate abundance during the spring bloom will largely affect the structuring and functioning of the associated bacterial communities. This could decrease pelagic remineralization of organic matter and possibly affect the bacterial grazers communities.
  • Peltomaa, Elina; Hällfors, Heidi; Taipale, Sami J. (2019)
    Recent studies have clearly shown the importance of omega-3 (-3) and omega-6 (-6) polyunsaturated fatty acids (PUFAs) for human and animal health. The long-chain eicosapentaenoic acid (EPA; 20:5-3) and docosahexaenoic acid (DHA; 22:6-3) are especially recognized for their nutritional value, and ability to alleviate many diseases in humans. So far, fish oil has been the main human source of EPA and DHA, but alternative sources are needed to satisfy the growing need for them. Therefore, we compared a fatty acid profile and content of 10 diatoms and seven dinoflagellates originating from marine, brackish and freshwater habitats. These two phytoplankton groups were chosen since they are excellent producers of EPA and DHA in aquatic food webs. Multivariate analysis revealed that, whereas the phytoplankton group (46%) explained most of the differences in the fatty acid profiles, habitat (31%) together with phytoplankton group (24%) explained differences in the fatty acid contents. In both diatoms and dinoflagellates, the total fatty acid concentrations and the -3 and -6 PUFAs were markedly higher in freshwater than in brackish or marine strains. Our results show that, even though the fatty acid profiles are genetically ordered, the fatty acid contents may vary greatly by habitat and affect the -3 and -6 availability in food webs.
  • Jerney, Jacqueline; Suikkanen, Sanna; Lindehoff, Elin; Kremp, Anke (2019)
    Abstract Environmental conditions regulate the germination of phytoplankton resting stages. While some factors lead to synchronous germination, others stimulate germination of only a small fraction of the resting stages. This suggests that habitat filters may act on the germination level and thus affect selection of blooming strains. Benthic ?seed banks? of the toxic dinoflagellate Alexandrium ostenfeldii from the Baltic Sea are genetically and phenotypically diverse, indicating a high potential for adaptation by selection on standing genetic variation. Here, we experimentally tested the role of climate-related salinity and temperature as selection filters during germination and subsequent establishment of A. ostenfeldii strains. A representative resting cyst population was isolated from sediment samples, and germination and reciprocal transplantation experiments were carried out, including four treatments: Average present day germination conditions and three potential future conditions: high temperature, low salinity, and high temperature in combination with low salinity. We found that the final germination success of A. ostenfeldii resting cysts was unaffected by temperature and salinity in the range tested. A high germination success of more than 80% in all treatments indicates that strains are not selected by temperature and salinity during germination, but selection becomes more important shortly after germination, in the vegetative stage of the life cycle. Moreover, strains were not adapted to germination conditions. Instead, highly plastic responses occurred after transplantation and significantly higher growth rates were observed at higher temperature. High variability of strain-specific responses has probably masked the overall effect of the treatments, highlighting the importance of testing the effect of environmental factors on many strains. It is likely that A. ostenfeldii populations can persist in the future, because suitable strains, which are able to germinate and grow well at potential future climate conditions, are part of the highly diverse cyst population. OPEN RESEARCH BADGES This article has been awarded Open Data badge. All materials and data are publicly accessible via the Open Science Framework at Learn more about the Open Practices badges from the Center for Open Science: