Browsing by Subject "dispersal"

Sort by: Order: Results:

Now showing items 1-20 of 30
  • Soininen, Janne; Heino, Jani; Wang, Jianjun (2018)
    Aim: The number of studies investigating the nestedness and turnover components of beta diversity has increased substantially, but our general understanding of the drivers of turnover and nestedness remains elusive. Here, we examined the effects of species traits, spatial extent, latitude and ecosystem type on the nestedness and turnover components of beta diversity. Location: Global. Time period: 1968-2017. Major taxa studied: From bacteria to mammals. Methods: From the 99 studies that partition total beta diversity into its turnover and nestedness components, we assembled 269 and 259 data points for the pairwise and multiple site beta-diversity metrics, respectively. Our data covered a broad variation in species dispersal type, body size and trophic position. The data were from freshwater, marine and terrestrial realms, and encompassed geographical areas from the tropics to near polar regions. We used linear modelling as a meta-regression tool to analyse the data. Results: Pairwise turnover, multiple site turnover and total beta diversity all decreased significantly with latitude. In contrast, multiple site nestedness showed a positive relationship with latitude. Beta-diversity components did not generally differ among the realms. The turnover component and total beta diversity increased with spatial extent, whereas nestedness was scale invariant for pairwise metrics. Multiple site beta-diversity components did not vary with spatial extent. Surprisingly, passively dispersed organisms had lower turnover and total beta diversity than flying organisms. Body size showed a relatively weak relationship with beta diversity but had important interactions with trophic position, thus also affecting beta diversity via interactive effects. Producers had significantly higher average pairwise turnover and total beta diversity than carnivores. Main conclusions: The present results provide evidence that species turnover, being consistently the larger component of total beta diversity, and nestedness are related to the latitude of the study area and intrinsic organismal features. We showed that two beta-diversity components had generally opposing patterns with regard to latitude. We highlight that beta-diversity partition may give additional insights into the underlying causes of spatial variability in biotic communities compared with total beta diversity alone.
  • Mattila, Anniina L. K. (Helsingin yliopisto. Bio- ja ympäristötieteiden laitos, 2007)
    Habitat fragmentation produces patches of suitable habitat surrounded by unfavourable matrix habitat. A species may persist in such a fragmented landscape in an equilibrium between the extinctions and recolonizations of local populations, thus forming a metapopulation. Migration between local populations is necessary for the long-term persistence of a metapopulation. The Glanville fritillary butterfly (Melitaea cinxia) forms a metapopulation in the Åland islands in Finland. There is migration between the populations, the extent of which is affected by several environmental factors and variation in the phenotype of individual butterflies. Different allelic forms of the glycolytic enzyme phosphoglucose isomerase (Pgi) has been identified as a possible genetic factor influencing flight performance and migration rate in this species. The frequency of a certain Pgi allele, Pgi-f, follows the same pattern in relation to population age and connectivity as migration propensity. Furthermore, variation in flight metabolic performance, which is likely to affect migration propensity, has been linked to genetic variation in Pgi or a closely linked locus. The aim of this study was to investigate the association between Pgi genotype and the migration propensity in the Glanville fritillary both at the individual and population levels using a statistical modelling approach. A mark-release-recapture (MRR) study was conducted in a habitat patch network of M. cinxia in Åland to collect data on the movements of individual butterflies. Larval samples from the study area were also collected for population level examinations. Each butterfly and larva was genotyped at the Pgi locus. The MRR data was parameterised with two mathematical models of migration: the Virtual Migration Model (VM) and the spatially explicit diffusion model. VM model predicted and observed numbers of emigrants from populations with high and low frequencies of Pgi-f were compared. Posterior predictive data sets were simulated based on the parameters of the diffusion model. Lack-of-fit of observed values to the model predicted values of several descriptors of movements were detected, and the effect of Pgi genotype on the deviations was assessed by randomizations including the genotype information. This study revealed a possible difference in the effect of Pgi genotype on migration propensity between the two sexes in the Glanville fritillary. The females with and males without the Pgi-f allele moved more between habitat patches, which is probably related to differences in the function of flight in the two sexes. Females may use their high flight capacity to migrate between habitat patches to find suitable oviposition sites, whereas males may use it to acquire mates by keeping a territory and fighting off other intruding males, possibly causing them to emigrate. The results were consistent across different movement descriptors and at the individual and population levels. The effect of Pgi is likely to be dependent on the structure of the landscape and the prevailing environmental conditions.
  • Jamoneau, Aurelien; Passy, Sophia I.; Soininen, Janne; Leboucher, Thibault; Tison-Rosebery, Juliette (2018)
    1. Understanding the mechanisms that drive beta diversity (i.e. beta-diversity), an important aspect of regional biodiversity, remains a priority for ecological research. beta-diversity and its components can provide insights into the processes generating regional biodiversity patterns. We tested whether environmental filtering or dispersal related processes predominated along the stream watercourse by analysing the responses of taxonomic and functional diatom beta-diversity to environmental and spatial factors. 2. We examined the variation in total beta-diversity and its components (turnover and nestedness) in benthic diatom species and ecological guilds (motile, planktonic, low-and high profile) with respect to watercourse position (up-, mid-and downstream) in 2,182 sites throughout France. We tested the effects of pure environmental and pure spatial factors on beta-diversity with partial Mantel tests. Environmental factors included eight physicochemical variables, while geographical distances between sites were used as spatial factors. We also correlated a and c-diversity, and the degree of nestedness (NODF metric) with environmental variables. 3. Total beta-diversity and its turnover component displayed higher values upstream than mid-and downstream. The nestedness component exhibited low values, even when NODF values increased from up-to downstream. Pure environmental factors were highly significant for explaining total beta-diversity and turnover regardless of watercourse position, but pure spatial factors were mostly significant mid-and downstream, with geographical distance being positively correlated with beta-diversity. Across sites, nutrient enrichment decreased turnover but increased the degree of nestedness. Motile and low profile diatoms comprised the most abundant guilds, but their beta-diversity patterns varied in an opposite way. The lowest guild beta-diversity was observed upstream for low profile species, and downstream for motile species. 4. In conclusion, environmental filtering seemed to play a major role in structuring metacommunities irrespective of site watercourse position. Filtering promoted strong turnover patterns, especially in disconnected upstream sites. The greater role of spatial factors mid-and downstream was consistent with mass effects rather than neutral processes because these sites had lower total beta-diversity than upstream sites. Motile species were most strongly affected by mass effects processes, whereas low profile species were primarily influenced by environmental conditions. Collectively, these findings suggest that partitioning of total beta-diversity into its components and the use of diatom ecological guilds provide a useful framework for assessing the mechanisms underlying metacommunity patterns along the stream watercourse.
  • Siqueira, Tadeu; Saito, Victor S.; Bini, Luis M.; Melo, Adriano S.; Petsch, Danielle K.; Landeiro, Victor L.; Tolonen, Kimmo T.; Jyrkänkallio-Mikkola, Jenny; Soininen, Janne; Heino, Jani (2020)
    Ecological drift can override the effects of deterministic niche selection on small populations and drive the assembly of some ecological communities. We tested this hypothesis with a unique data set sampled identically in 200 streams in two regions (tropical Brazil and boreal Finland) that differ in macroinvertebrate community size by fivefold. Null models allowed us to estimate the magnitude to which beta-diversity deviates from the expectation under a random assembly process while taking differences in richness and relative abundance into account, i.e., beta-deviation. We found that both abundance- and incidence-based beta-diversity was negatively related to community size only in Brazil. Also, beta-diversity of small tropical communities was closer to stochastic expectations compared with beta-diversity of large communities. We suggest that ecological drift may drive variation in some small communities by changing the expected outcome of niche selection, increasing the chances of species with low abundance and narrow distribution to occur in some communities. Habitat destruction, overexploitation, pollution, and reductions in connectivity have been reducing the size of biological communities. These environmental pressures might make smaller communities more vulnerable to novel conditions and render community dynamics more unpredictable. Incorporation of community size into ecological models should provide conceptual and applied insights into a better understanding of the processes driving biodiversity.
  • Ronnas, Cecilia; Werth, Silke; Ovaskainen, Otso; Varkonyi, Gergely; Scheidegger, Christoph; Snall, Tord (2017)
    Accurate estimates of gamete and offspring dispersal range are required for the understanding and prediction of spatial population dynamics and species persistence. Little is known about gamete dispersal in fungi, especially in lichen-forming ascomycetes. Here, we estimate the dispersal functions of clonal propagules, gametes and ascospores of the epiphytic lichen Lobaria pulmonaria. We use hierarchical Bayesian parentage analysis, which integrates genetic and ecological information from multiannual colonization and dispersal source data collected in a large, oldgrowth forest landscape. The effective dispersal range of gametes is several hundred metres to kilometres from potential paternal individuals. By contrast, clonal propagules disperse only tens of metres, and ascospores disperse over several thousand metres. Our study reveals the dispersal distances of individual reproductive units; clonal propagules, gametes and ascospores, which is of great importance for a thorough understanding of the spatial dynamics of ascomycetes. Sexual reproduction occurs between distant individuals. However, whereas gametes and ascospores disperse over long distances, the overall rate of colonization of trees is low. Hence, establishment is the limiting factor for the colonization of new host trees by the lichen in old- growth landscapes.
  • Vilmi, Annika; Gibert, Corentin; Escarguel, Gilles; Happonen, Konsta; Heino, Jani; Jamoneau, Aurelien; Passy, Sophia I.; Picazo, Felix; Soininen, Janne; Tison-Rosebery, Juliette; Wang, Jianjun (2021)
    Patterns in community composition are scale-dependent and generally difficult to distinguish. Therefore, quantifying the main assembly processes in various systems and across different datasets has remained challenging. Building on the PER-SIMPER method, we propose a new metric, the dispersal-niche continuum index (DNCI), which estimates whether dispersal or niche processes dominate community assembly and facilitates the comparisons of processes among datasets. The DNCI was tested for robustness using simulations and applied to observational datasets comprising organismal groups with different trophic level and dispersal potential. Based on the robustness tests, the DNCI discriminated the respective contribution of niche and dispersal processes in pairwise comparisons of site groups with less than 40% and 30% differences in their taxa and site numbers, respectively. In the observational datasets, the DNCI suggested that dispersal rather than niche assembly was the dominant assembly process which, however, varied in intensity among organismal groups and study contexts, including spatial scale and ecosystem types. The proposed DNCI measures the relative strength of community assembly processes in a way that is simple, easily quantifiable and comparable across datasets. We discuss the strengths and weaknesses of the DNCI and provide perspectives for future research.
  • Elo, Merja; Jyrkankallio-Mikkola, Jenny; Ovaskainen, Otso; Soininen, Janne; Tolonen, Kimmo T.; Heino, Jani (2021)
    The occupancy and abundance of species are jointly driven by local factors, such as environmental characteristics and biotic interactions, and regional-scale factors, such as dispersal and climate. Recently, it has been shown that biotic interactions shape species occupancies and abundances beyond local extents. However, for small ectothermic animals, particularly for those occurring in freshwater environments, the importance of biotic interactions remains understudied. Species-to-species associations from joint species distribution models (i.e. species associations while controlling for environmental characteristics) are increasingly used to draw hypotheses of which species possibly show biotic interactions. We studied whether species-to-species associations from joint species distribution models show signs of competition using a hypothesis testing framework in stream macroinvertebrate communities at regional extent. We sampled aquatic macroinvertebrates from 105 stream sites in western Finland encompassing a latitudinal gradient of c. 500 kilometres. We hypothesized that if competition drives these associations (H1) functionally, similar species are mostly negatively associated, whereas functionally dissimilar species show random associations. We further hypothesized that the relationship between functional dissimilarity and the strength of association is more pronounced (H2) for abundances rather than occupancies, (H3) at small grain (i.e. stream site) rather than at large grain (i.e. river basin), and (H4) among species having weak dispersal ability than among species with high dispersal ability. Stream macroinvertebrates showed both negative and positive species-to-species associations while controlling for habitat characteristics. However, the negative associations were mostly at large grain (river basin) rather than at small grain (stream site), in occupancy rather than abundance, and not related to species functional dissimilarity or to their dispersal ability. Thus, all our hypotheses considering possible competition (H1-H4) were rejected. Competition does not appear to be a major driving force of stream macroinvertebrate communities at the spatial grain sizes considered. The observed positive associations in occupancy at small grain (stream site) may be attributed to species' similar microhabitat preferences, whereas at large grain (river basin), they may stem from metacommunity dynamics. Our results highlight that species traits were necessary to interpret whether or not species-to-species associations from joint species distribution models resulted from biotic interactions.
  • He, Siwen; Soininen, Janne; Chen, Kai; Wang, Beixin (2020)
    Metacommunity theory provides a useful framework to describe the underlying factors (e.g., environmental and dispersal-related factors) influencing community structure. The strength of these factors may vary depending on the properties of the region studied (e.g., environmental heterogeneity and spatial location) and considered biological groups. Here, we examined environmental and dispersal-related controls of stream macroinvertebrates and diatoms in three regions in China using the distance-decay relationship analysis. We performed analyses for the whole stream network and separately for two stream network locations (headwater and downstream sites) to test the network position hypothesis (NPH), which states that the strength of environmental and dispersal-related controls varies between headwater and downstream communities. Community dissimilarities were significantly related to environmental distances, but not geographical distances. These results suggest that communities are structured strongly by environmental filtering, but weakly by dispersal-related factors such as dispersal limitation. More importantly, we found that, at the whole network scale, environmental control was the highest in the regions with highest environmental heterogeneity. Results further showed that the influence of environmental control was strong in both headwaters and downstream sites, whereas spatial control was generally weak in all sites. This suggests a lack of consistent support for the NPH in our studied stream networks. Moreover, we found that local-scale variables relative to basin-scale variables better explained community dissimilarities for diatoms than for macroinvertebrates. This indicates that diatoms and macroinvertebrates responded to environment at different scales. Collectively, these results suggest that the importance of drivers behind the metacommunity assembly varied among regions with different level of environmental heterogeneity and between organism groups, potentially indicating context dependency among stream systems and taxa.
  • Pettay, Jenni E.; Lummaa, Virpi; Lynch, Robert; Loehr, John (2021)
    Because sex ratios are a key factor regulating mating success and subsequent fitness both across and within species, there is widespread interest in how population-wide sex ratio imbalances affect marriage markets and the formation of families in human societies. Although most modern cities have more women than men and suffer from low fertility rates, the effects of female-biased sex ratios have garnered less attention than male-biased ratios. Here, we analyze how sex ratios are linked to marriages, reproductive histories, dispersal, and urbanization by taking advantage of a natural experiment in which an entire population was forcibly displaced during World War II to other local Finnish populations of varying sizes and sex ratios. Using a discrete time-event generalized linear mixed-effects model, and including factors that change across time, such as annual sex ratio, we show how sex ratios, reproduction, and migration are connected in a female-dominated environment. Young childless women migrated toward urban centers where work was available to women, and away from male-biased rural areas. In such areas where there were more females, women were less likely to start reproduction. Despite this constraint, women showed little flexibility in mate choice, with no evidence for an increase in partner age difference in female-biased areas. We propose that together these behaviors and conditions combine to generate an "urban fertility trap" which may have important consequences for our understanding of the fertility dynamics of today including the current fertility decline across the developed world.
  • Pakanen, Veli-Matti; Aikio, Sami; Luukkonen, Aappo; Koivula, Kari (2016)
    The effect of habitat management is commonly evaluated by measuring population growth, which does not distinguish changes in reproductive success from changes in survival or the effects of immigration or emigration. Management has rarely been evaluated considering complete life cycle of the target organisms, including also possible negative impacts from management. We evaluated the effectiveness of cattle grazing in the restoration of coastal meadows as a breeding habitat for small and medium-sized ground-nesting birds by examining the size and demography of a southern dunlin (Calidris alpina schinzii) breeding population. Using a stochastic renesting model that includes within-season variation in breeding parameters, we evaluated the effect of grazing time and stocking rates on reproduction. The census data indicated that the population was stable when nest trampling was prevented, but detailed demographic models showed that the population on managed meadows was a sink that persisted by attracting immigrants. Even small reductions in reproductive success caused by trampling were detrimental to long-term viability. We suggest that the best management strategy is to postpone grazing to after the 19th of June, which is about three weeks later than what is optimal from the farmer's point of view. The differing results from the two evaluation approaches warn against planning and evaluating management only based on census population size and highlight the need to consider target-specific life history characteristics and demography. Even though grazing management is crucial for creating and maintaining suitable habitats, we found that it was insufficient in maintaining a viable population without additional measures that increase nest success. In the presently studied case and in populations with similar breeding cycles, impacts from nest trampling can be avoided by starting grazing when about 70% of the breeding season has past.
  • Fountain, Toby; Husby, Arild; Nonaka, Etsuko; DiLeo, Michelle; Korhonen, Janne H.; Rastas, Pasi; Schulz, Torsti Michael; Saastamoinen, Marjo Anna Kaarina; Hanski, Ilkka Aulis (2018)
    Dispersal is important for determining both species ecological processes, such as population viability, and its evolutionary processes, like gene flow and local adaptation. Yet obtaining accurate estimates in the wild through direct observation can be challenging or even impossible, particularly over large spatial and temporal scales. Genotyping many individuals from wild populations can provide detailed inferences about dispersal. We therefore utilized genomewide marker data to estimate dispersal in the classic metapopulation of the Glanville fritillary butterfly (Melitaea cinxia L.), in the Aland Islands in SW Finland. This is an ideal system to test the effectiveness of this approach due to the wealth of information already available covering dispersal across small spatial and temporal scales, but lack of information at larger spatial and temporal scales. We sampled three larvae per larval family group from 3732 groups over a six-year period and genotyped for 272 SNPs across the genome. We used this empirical data set to reconstruct cases where full-sibs were detected in different local populations to infer female effective dispersal distance, that is, dispersal events directly contributing to gene flow. On average this was one kilometre, closely matching previous dispersal estimates made using direct observation. To evaluate our power to detect full-sib families, we performed forward simulations using an individual-based model constructed and parameterized for the Glanville fritillary metapopulation. Using these simulations, 100% of predicted full-sibs were correct and over 98% of all true full-sib pairs were detected. We therefore demonstrate that even in a highly dynamic system with a relatively small number of markers, we can accurately reconstruct full-sib families and for the first time make inferences on female effective dispersal. This highlights the utility of this approach in systems where it has previously been impossible to obtain accurate estimates of dispersal over both ecological and evolutionary scales.
  • Karisto, Petteri; Kisdi, Èva (2019)
    Functional connectivity, the realized flow of individuals between the suitable sites of a heterogeneous landscape, is a prime determinant of the maintenance and evolution of populations in fragmented habitats. While a large body of literature examines the evolution of dispersal propensity, it is less known how evolution shapes functional connectivity via traits that influence the distribution of the dispersers. Here, we use a simple model to demonstrate that, in a heterogeneous environment with clustered and solitary sites (i.e., with variable structural connectivity), the evolutionarily stable population contains strains that are strongly differentiated in their pattern of connectivity (local vs. global dispersal), but not necessarily in the fraction of dispersed individuals. Also during evolutionary branching, selection is disruptive predominantly on the pattern of connectivity rather than on dispersal propensity itself. Our model predicts diversification along a hitherto neglected axis of dispersal strategies and highlights the role of the solitary sites-the more isolated and therefore seemingly less important patches of habitat-in maintaining global dispersal that keeps all sites connected.
  • Lilley, Thomas Mikael; Anttila, Jani Valtteri; Ruokolainen, Lasse (2018)
    White-nose syndrome (WNS), affecting multiple North American bat species during the hibernation period, is a highly pathogenic disease caused by the psychrophilic fungus Pseudogymnoascus destructans (Pd). Because the fungal pathogen persists in the hibernation site environment independently of the hosts, previous theory on spatial disease dynamics cannot predict WNS epidemics. However, the ability to understand factors contributing to the spread of white-nose syndrome (WNS) in North America is crucial to the management of infected and susceptible bat populations as well as the conservation of threatened and endangered bat species. Utilizing recent theory on environmental opportunistic pathogens, we modelled the effect of (a) landscape clustering, (b) environmental conditions in hibernacula and (c) microbial competition on the spread of WNS. We used available, already published data to construct and parameterize our model, which takes into account the spatial distribution of hibernation sites, temperature conditions in both the outside ambient and hibernation site environment, bat population dynamics, dispersal and infection by the pathogen, which also has its host-independent dynamics with the environment. We also consider the effect of outside-host competition between the pathogen and other micro-organisms on spatial disease dynamics. Our model suggests that pathogen loads accumulate in poorly connected hibernacula at short host dispersal, which can help found the epidemic. In contrast, invasion of the landscape is most successful at long host dispersal distances, with homogenous hibernation site distribution and heterogeneous between-hibernation site temperatures. Also, increasing the mean temperature across hibernacula increases fungal growth rate, leading to higher disease prevalence and faster invasion rate. Increasing spatial heterogeneity in hibernaculum temperatures results in the formation of disease hotspots in warmer hibernacula, facilitating more effective spread of the disease in the landscape. Cold-adapted competing microbes can prevent invasion, and therefore, overwintering in cold hibernacula increases probability of host survival. Sites that were suboptimal for overwintering prior to WNS may have importance in preventing local extirpations. Although the model is tailored for WNS, due to pressing need for results that can assist in planning conservation measures, these novel results can be broadly applied to other environmentally transmitted diseases. A is available for this article.
  • Hakala, Sanja M.; Ittonen, Mats; Seppä, Perttu; Helanterä, Heikki (2020)
    Abstract Understanding how social groups function requires studies on how individuals move across the landscape and interact with each other. Ant supercolonies are extreme cooperative units that may consist of thousands of interconnected nests, and their individuals cooperate over large spatial scales. However, the inner structure of suggested supercolonial (or unicolonial) societies has rarely been extensively studied using both genetic and behavioral analyses. We describe a dense supercolony-like aggregation of more than 1,300 nests of the ant Formica (Coptoformica) pressilabris. We performed aggression assays and found that, while aggression levels were generally low, there was some aggression within the assumed supercolony. The occurrence of aggression increased with distance from the focal nest, in accordance with the genetically viscous population structure we observe by using 10 DNA microsatellite markers. However, the aggressive interactions do not follow any clear pattern that would allow specifying colony borders within the area. The genetic data indicate limited gene flow within and away from the supercolony. Our results show that a Formica supercolony is not necessarily a single unit but can be a more fluid mosaic of aggressive and amicable interactions instead, highlighting the need to study internest interactions in detail when describing supercolonies.
  • Garcia, Raquel A.; Araujo, Miguel B.; Burgess, Neil D.; Foden, Wendy B.; Gutsche, Alexander; Rahbek, Carsten; Cabeza, Mar (2014)
  • Viitanen, Ville (Helsingin yliopisto, 2017)
    In my Master’s Thesis I researched young lynxes ́ (Lynx lynx) use of habitat during dispersal. When analysing different research materials, I found out what kind of habitats and topography young lynxes use during their dispersal. There haven ́t been many researchs in this area in Finland before, therefore this research is providing new information to the subject. The Natural Resources Institute in Finland provided the tracking materials for the research. In this work I have three research questions. 1.) Does different habitat types affect to dispersal and does the use of habitat types vary between male and female? 2.) Does topography affect to dispersal and how does the topography classes are divided between male and female? 3.) Which sex disperses further? The studied area was Southern Finland, below the city of Jyväskylä. My research material contained nine male and seven female lynxes. The material was collected during years 2008 – 2014. Lynxes in the study had a GPS -collar, enabling position tracking. The gathered positioning points were transferred to ArcGIS 10.3.1 geographic program. Besides positioning points, the Corine Land Cover -2012 habitat map and DEM (Digital elevation model) topography were used in the study. I classified Corine materials to eight different categories and DEM materials set to twenty different categories. I converted the lynxes ́ positioning points into trails. The trail zone was set to four kilometres. Also, an individual zone with a radius of ten meters was set for each positioning point. When analysing these zones, I was able to find out what kind of habitats and topography lynxes use during dispersal. The length of the dispersal was calculated in two ways: A1-B1 the length of the dispersal was the distance between the start and end points. A2-B2 the length of the dispersal was the total length between all positioning points. I used the Mann Whitney -U test for the statistic testing. The results of this study show that male and female lynxes ́ use of habitats in the research area was divided evenly. Two classes showed statistically significant results: females favour peatlands in four kilometers dispersal trail zone. In ten meters positioning point zone females favour more coniferous forest. There were no special characteristics in males ́ use of habitats. The results of composition analyze show that lynxes favour mixed- and coniferous forests and fields. Selection of habitats wasn’t random. There were no difference in the use of topography between males and females, although one topography class was statistically significant. Mainly lynxes favour higher topography. The results show that males disperse further than females. There was, however, one female, whose dispersal was abnormally longer when compared to the other females. There was a strong positive correlation between the total length of the dispersal and the time used for the dispersal Generally there was no difference between the linearity of the dispersal trails of males and females. The results of this Master’s Thesis are used in the national lynx research project.
  • Crosier, Brittni Joette (Helsingin yliopisto, 2020)
    Biogeography is a crucial aspect to ecological studies, as an ecosystem is comprised of the physical habitat, the organisms living there, and the interactions of these components. Community structure, and therefore functioning, are inherently of a spatial nature. Spatial structure of populations is often crucial basic knowledge for understanding the evolutionary history, dispersal patterns, and resilience of any given species. One aspect of spatial structure, and the topic covered in this study, is community distance decay, or the rate at which community similarity decreases with physical distance. More of the landscape is constantly being altered by humans on a large scale, so it is increasingly important to understand the effects that these anthroprogenic changes to the environment has on local populations. Studying community distance decay helps form understanding of dispersal and establishment limitations for different organisms, which is necessary for mitigating biodiversity loss. Many studies show that habitat fragmentation and loss has greatly impacted the structure of plant and animal communities, but there has been much less focus on fungal communities. There’s no certainty that fungi is impacted in the same ways, given the different lifestyles and dispersal methods, so the aim of this study is to contribute to the much needed research on fungal community structure at various scales. This aim is addressed by examining fungal community distance decay from small scale of a couple kilometers or less to a fairly large scale encompassing a landscape of primarily urban, forest, and agricultural areas. The five main localities of sampling were in middle and southern Finland: Helsinki, Lahti, Tampere, Jyväskylä, and Joensuu. Sampling locations and plot design were chosen to allow the comparison of communities separated by a mosaic, as well as along a short rural to urban gradient, to assess the effects of habitat type. From each location, six plots were decided, two in urban core, one in urban edge, two in natural core, and one in natural edge. The role of dispersal ability and functional traits in distance decay is also studied by comparing results from two different methods of fungi sampling, which were collecting spores from the air using cyclone samplers, and taking soil cores to gather fungal biomass. All samples were DNA analysed with high-throughput sequencing and the results from the DNA barcoding were used to create OTU clusters, by which the 30 plots could be compared through relative abundances of OTU’s. I determined the similarity of fungal communities using an analysis of similarity (ANOSIM) test in R, where all possible variables (site, habitat type, sample type) were used as a grouping in individual tests, thereby indicating which variable is associated with highest community difference. I also determined the differences in functional groups and major taxonomic levels among locations and sampling method using interactive taxanomic (KRONA) charts. Results showed that there are differences in fungal community structure among habitat type and sampling type. However there was greater difference at the level of plots than site locations, so clear patterns of strong community distance decay with physical distance was not measured in this study. The results suggest that fungal communities can be fairly impacted by human caused habitat change, and individual characteristics, such as dispersal methods or lifestyle, effect the rate of community distance-decay. This provides a valuable early insight into fungal community patterns, which need deeper study to understand the complexities and mechanisms behind them.
  • Batista, Romina; Olsson, Urban; Andermann, Tobias; Aleixo, Alexandre; Ribas, Camila Cherem; Antonelli, Alexandre (2020)
    To elucidate the relationships and spatial range evolution across the world of the bird genus Turdus (Aves), we produced a large genomic dataset comprising ca 2 million nucleotides for ca 100 samples representing 53 species, including over 2000 loci. We estimated time-calibrated maximum-likelihood and multispecies coalescentphylogenies and carried out biogeographic analyses. Our results indicate that there have been considerably fewer trans-oceanic dispersals within the genus Turdus than previously suggested, such that the Palaearctic clade did not originate in America and the African clade was not involved in the colonization of the Americas. Instead, our findings suggest that dispersal from the Western Palaearctic via the Antilles to the Neotropics might have occurred in a single event, giving rise to the rich Neotropical diversity of Turdus observed today, with no reverse dispersals to thePalaearctic or Africa. Our large multilocus dataset, combined with dense species-level sampling and analysed under probabilistic methods, brings important insights into historical biogeography and systematics, even in a scenario of fast and spatially complex diversification.
  • Tikka, P.M.; Högmander, H.; Koski, P.S. (Kluwer Academic Publishers, 2001)
    The role of linear habitat strips as dispersal corridors is a disputed topic. Reports concerning their significance for animals have been contradictory, and the functions of corridors have been difficult to study in the case of sedentary organisms such as plants. Previous studies on dispersal of plants along corridors have concentrated on a single or a few species at a time. We developed a general method, a generalisation of the binomial test, for considering dispersal or spatial relations of a large group of species. Particularly, we studied the ability of grassland plants to spread along road and railway verges. Our data set consists of plant lists collected at study plots scattered irregularly along road and railway networks. The dispersal ability was assessed by testing whether the species composition at neighbouring sites – measured along roads and railways – reflects spatial dependence within each species. Our result showed that similar combinations of grassland species occurred at neighbouring sites more often than expected in a spatially independent case. We argue that management of verges and spatial autocorrelation of environmental factors were not responsible for the result and thereby we conclude that grassland plants use road and railway corridors for dispersal. This result is encouraging in regards to preservation of grassland plant populations. Although semi-natural and natural grasslands have become scarce, road and railway embankments may partly compensate for this loss, serving as substitute habitats and dispersal routes.
  • Aubriot, Xavier; Knapp, Sandra; Syfert, Mindy; Poczai, Péter; Buerki, Sven (2018)
    • While brinjal eggplant (Solanum melongena L.) is the second most important solanaceaous vegetable crop, we lack firm knowledge of its evolutionary relationships. This in turn limits efficient use of crop wild relatives in eggplant improvement. Here, we examine the hypothesis of linear step-wise expansion of the eggplant group from Africa to Asia. • We use museum collections to generate nuclear and full-plastome data for all species of the eggplant clade. We combine a phylogenomic approach with distribution data to infer a biogeographic scenario for the clade. • The eggplant clade has Pleistocene origins in northern Africa. Dispersions to tropical Asia gave rise to Solanum insanum, the wild progenitor of the eggplant, and to Africa distinct lineages of widespread and southern-African species. Results suggest that spread of species to southern Africa is recent and was likely facilitated by large mammal herbivores feeding on Solanum fruits (African elephant, impala). • Rather than a linear ‘Out Of Africa’ sequence, our results are more consistent with an initial event into Asia, and subsequent wide dispersion and differentiation across Africa driven by large mammalian herbivores. Our evolutionary results will impact future work on eggplant domestication and use of wild relatives in breeding of this increasingly important solanaceous crop.