Browsing by Subject "dityppioksidi"

Sort by: Order: Results:

Now showing items 1-4 of 4
  • Grönroos, Juha; Mattila, Pasi; Regina, Kristiina; Nousiainen, Jouni; Perälä, Paula; Saarinen, Kristina; Mikkola-Pusa, Johanna (Finnish Environment Institute, 2009)
    The Finnish Environment 8/2009
    Agriculture is the main source of ammonia (NH3) emissions in Finland comprising ca. 90% of the total emissions annually. Agriculture is also an important source of nitrous oxide (N2O), a greenhouse gas for which agriculture is responsible for ca. 50% of emissions. The main source for ammonia is livestock manure whereas for N2O its importance is much smaller. However, the same activity data are needed to assess both NH3 and direct N2O emissions from animal husbandry. In addition to this, indirect emissions of N2O are calculated based on NH3 and NO emissions. NH3 and N2O emissions are annually reported according to international reporting classifications. The aims of the study were 1) to construct a calculation model for gaseous agricultural nitrogen emissions thereby developing and updating the emission calculation procedure to better reflect the development of these emissions in Finland, and 2) to improve correspondence of the emission inventory reporting with the reporting classifications. In 2007, the Finnish emissions of ammonia from agricultural sources totalled 30,686 tonnes, of which more than 60% originated from cattle manure. Time series for ammonia emissions from agriculture show that there have been no large changes in the total emissions during the last two decades. Despite the decreased number of cattle during that period the emissions have remained near the present level, mainly because of the increased nitrogen excretion of cattle. Emission projections for the years 2008–2050 show no significant changes in emissions in the future. As for ammonia, no significant changes for nitrous oxide emissions from animal husbandry have taken place, and no big changes can be expected in the future as long as there are no drastic alterations in animal production. Despite the development of emission modelling, the emission estimates still include significant sources of uncertainty, which is mainly related to information on the distribution of manure management systems and the use of different manure application methods as well as to information on ammonia evaporation in different manure management phases in Finland.
  • Rutanen, Aino (Helsingin yliopisto, 2020)
    Global warming caused by the warming effect of greenhouse gases (GHGs) induces permafrost thaw, which could alter Arctic ecosystems from prominent carbon sinks to potential sources of GHG emissions when polar microorganisms become metabolically more active and have access to carbon compounds that were previously largely unavailable. Polar microbes can have significant contributions to the growing emissions of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) and therefore, studies on their metabolism are important. The aim of my study was to investigate polar microbial community composition and diversity as well as functional potential that was related to GHG-cycling in a subarctic environment with genome-resolved metagenomics. Soil cores were collected at the Rásttigáisá fell that is located in Northern Norway. After DNA extraction, ten mineral soil samples were sequenced. Metagenome-assembled genomes (MAGs) were reconstructed using either the combination of human-guided binning and automatic binning or human-guided binning only. Taxonomy was assigned to the MAGs and the functional potential of the MAGs was determined. I recovered dozens of good-quality MAGs. Notably, the MAGs from the mostly unknown phyla Dormibacterota (formerly candidate phylum AD3) and Eremiobacterota (formerly candidate phylum WPS-2) were reconstructed. There were MAGs from the following bacterial phyla as well: Acidobacteriota, Actinobacteriota, Chloroflexota, Gemmatimonadota, Proteobacteria and Verrucomicrobiota. In addition to the bacterial MAGs, MAGs from the group of ammonia-oxidizing archaea were recovered. Most of the MAGs belonged to poorly studied phylogenetic groups and consequently, novel functional potential was discovered in many groups of microorganisms. The following metabolic pathways were observed: CO2 fixation via the Calvin cycle and possibly via a modified version of 3-hydroxypropionate/4-hydroxybutyrate cycle; carbon monoxide oxidation to CO2; CH4 oxidation and subsequent carbon assimilation via serine pathway; urea, ammonia and nitrite oxidation; incomplete denitrification as well as dissimilatory nitrate reduction to ammonium. My study demonstrates how genome-resolved metagenomics provides a valuable overview of the microbial community and its functional potential.
  • Pihlatie, Mari (Helsingfors universitet, 2001)
    Maaperä on merkittävä dityppioksidi- ja typpimonoksidipäästöjen lähde. Molempia kaasuja syntyy maassa nitrifikaation ja denitrifikaation sivutuotteina. Dityppioksidi (N2O) on voimakas kasvihuonekaasu alailmakehässä ja osallistuu otsonia tuhoaviin kemiallisiin reaktioihin yläilmakehässä. Typpimonoksidi (NO) on reaktiivinen yhdiste, joka osallistuu alailmakehässä otsonia ja happamia yhdisteitä tuottaviin kemiallisiin reaktioihin. Dityppioksidipäästöjä mitattiin kolmelta eri viljelymaalta (turve, hieta, savi), ja NO-päästöjä kahdelta viljelymaalta (turve, savi) touko-marraskuussa 2000. Koekentillä viljeltiin nurmea, ohraa ja perunaa. Dityppioksidipäästöjä mitattiin staattisella kammiomenetelmällä ja NO-päästöjä dynaamiselle kammiomenetelmällä. Viljelymaista mitattiin säännöllisesti myös maan kosteus, lämpötila, pH, mineraalityppipitoisuus ja nitrifioivien bakteerien aktiivisuus. Kenttäkokeiden lisäksi eri viljelymaiden N2O-tuottoprosesseja tutkittiin laboratorio-oloissa. Turvemaan kumulatiiviset N2O-päästöt (6,4 kg N2O-N ha-1) olivat noin kahdeksankertaiset verrattuna hietamaan päästöihin (0,8 kg N2O-N ha-1) ja lähes kuusinkertaiset verrattuna savimaan päästöihin (1,1 kg N2O-N ha-1). Dityppioksidipäästöjen ajallinen vaihtelu oli samansuuntaista kaikilla maalajeilla: N2O-päästöt kasvoivat kesällä toukokuun päästöistä ja saavuttivat maksimin elo-syyskuussa. Tämän jälkeen päästöt laskivat vähitellen ja pysyivät melko tasaisina marraskuun loppuun asti. Kasvilajien välillä ei havaittu suuria eroja N2O-päästöissä millään maalajilla. Typpimonoksidipäästöt ja NO- ja N2O-päästöjen suhde (NO/N2O) oli suurempi savimaalla kuin turvemaalla. Savimaan korkea NO/N2O –suhde oli tunnusomainen nitrifioiville bakteereille. Turvemaalla N2O-päästöt olivat huomattavasti NO-päästöjä suuremmat, jolloin NO/N2O –suhde oli pieni. Siten denitrifikaation arveltiin olevan merkittävämpi N2O- ja NO-kaasujen tuottoprosessi turvemaassa. Turvemaan suuret N2O-päästöt liitettiin maan korkeaan orgaanisten hiiliyhdisteiden ja typen pitoisuuksiin, jolloin maan olosuhteet ovat otolliset denitrifikaatiolle. Turve- ja hietamaalla N2O-päästöt korreloivat positiivisesti maan kosteuspitoisuuden ja maan lämpötilan kanssa. Turvemaalla positiivinen korrelaatio havaittiin myös N2O-päästöjen ja maan nitraatti-pitoisuuden välillä. Inkubaatiokokeet osoittivat, että nitrifikaatio on denitrifikaation ohella merkittävä N2O-päästöjä aiheuttava prosessi kaikissa tutkituissa maissa. Nitrifikaation osuus hapellisten maiden N2O-tuotosta oli savimaalla jopa 37 %, hietamaalla 31 % ja turvemaalla 29 % dityppioksidin kokonaistuotosta.