Browsing by Subject "ecological network"

Sort by: Order: Results:

Now showing items 1-2 of 2
  • Marjakangas, Emma-Liina; Abrego, Nerea; Grøtan, Vidar; de Lima, Renato A. F.; Bello, Carolina; Bovendorp, Ricardo S.; Culot, Laurence; Hasui, Érica; Lima, Fernando; Muylaert, Renata Lara; Niebuhr, Bernardo Brandão; Oliveira, Alexandre A.; Pereira, Lucas Augusto; Prado, Paulo I.; Stevens, Richard D.; Vancine, Maurício Humberto; Ribeiro, Milton Cezar; Galetti, Mauro; Ovaskainen, Otso (2020)
    Abstract Aim Forest fragmentation is among the principal causes of global biodiversity loss, yet how it affects mutualistic interactions between plants and animals at large spatial scale is poorly understood. In particular, tropical forest regeneration depends on animal-mediated seed dispersal, but the seed-dispersing animals face rapid decline due to forest fragmentation and defaunation. Here, we assess how fragmentation influences the pairwise interactions between 407 seed disperser and 1,424 tree species in a highly fragmented biodiversity hotspot. Location Atlantic Forest, South America. Methods We predicted interaction networks in 912 sites covering the entire biome by combining verified interaction data with co-occurrence probabilities obtained from a spatially explicit joint species distribution model. We identified keystone seed dispersers by computing a species-specific keystone index and by selecting those species belonging to the top 5% quantile. Results We show that forest fragmentation affects seed dispersal interactions negatively, and the decreased area of functionally connected forest, rather than increased edge effects, is the main driver behind the loss of interactions. Both the seed disperser availability for the local tree communities and in particular the proportion of interactions provided by keystone seed dispersers decline with increasing degree of fragmentation. Importantly, just 21 keystone species provided >40% of all interactions. The numbers of interactions provided by keystone and non-keystone species, however, were equally negatively affected by fragmentation, suggesting that seed dispersal interactions may not be rewired under strong fragmentation effects. Conclusions We highlight the importance of understanding the fragmentation-induced compositional shifts in seed disperser communities as they may lead to lagged and multiplicative effects on tree communities. Our results illustrate the utility of model-based prediction of interaction networks as well as model-based identification of keystone species as a tool for prioritizing conservation efforts. Similar modelling approaches could be applied to other threatened ecosystems and interaction types globally.
  • Llewelyn, John; Strona, Giovanni; McDowell, Matthew C.; Johnson, Christopher N.; Peters, Katharina J.; Stouffer, Daniel B.; de Visser, Sara N.; Saltre, Frederik; Bradshaw, Corey J. A. (2022)
    Extinctions stemming from environmental change often trigger trophic cascades and coextinctions. Bottom-up cascades occur when changes in the primary producers in a network elicit flow-on effects to higher trophic levels. However, it remains unclear what determines a species' vulnerability to bottom-up cascades and whether such cascades were a large contributor to the megafauna extinctions that swept across several continents in the Late Pleistocene. The pathways to megafauna extinctions are particularly unclear for Sahul (landmass comprising Australia and New Guinea), where extinctions happened earlier than on other continents. We investigated the potential role of bottom-up trophic cascades in the megafauna extinctions in Late Pleistocene Sahul by first developing synthetic networks that varied in topology to identify how network position (trophic level, diet breadth, basal connections) influences vulnerability to bottom-up cascades. We then constructed pre-extinction (-80 ka) network models of the ecological community of Naracoorte, south-eastern Sahul, to assess whether the observed megafauna extinctions could be explained by bottom-up cascades. Synthetic networks showed that node vulnerability to bottom-up cascades decreased with increasing trophic level, diet breadth and basal connections. Extinct species in the Naracoorte community were more vulnerable overall to these cascades than were species that survived. The position of extinct species in the network - tending to be of low trophic level and therefore having relatively narrow diet breadths and fewer connections to plants - made them vulnerable. However, these species also tended to have few or no predators, a network-position attribute that suggests they might have been particularly vulnerable to new predators. Together, these results suggest that trophic cascades and naivety to predators could have contributed to the megafauna extinction event in Sahul.