Browsing by Subject "ecological traits"

Sort by: Order: Results:

Now showing items 1-2 of 2
  • Lehikoinen, Aleksi; Virkkala, Raimo (2016)
    There is increasing evidence that climate change shifts species distributions towards poles and mountain tops. However, most studies are based on presence-absence data, and either abundance or the observation effort has rarely been measured. In addition, hardly any studies have investigated the direction of shifts and factors affecting them. Here, we show using count data on a 1000km south-north gradient in Finland, that between 1970-1989 and 2000-2012, 128 bird species shifted their densities, on average, 37km towards the north north-east. The species-specific directions of the shifts in density were significantly explained by migration behaviour and habitat type. Although the temperatures have also moved on average towards the north north-east (186km), the species-specific directions of the shifts in density and temperature did not correlate due to high variation in density shifts. Findings highlight that climate change is unlikely the only driver of the direction of species density shifts, but species-specific characteristics and human land-use practices are also influencing the direction. Furthermore, the alarming results show that former climatic conditions in the north-west corner of Finland have already moved out of the country. This highlights the need for an international approach in research and conservation actions to mitigate the impacts of climate change.
  • Burner, Ryan C.; Stephan, Jorg G.; Drag, Lukas; Birkemoe, Tone; Muller, Joerg; Snäll, Tord; Ovaskainen, Otso; Potterf, Maria; Siitonen, Juha; Skarpaas, Olav; Doerfler, Inken; Gossner, Martin M.; Schall, Peter; Weisser, Wolfgang W.; Sverdrup-Thygeson, Anne (2021)
    Aim The aim of this study was to investigate the role of traits in beetle community assembly and test for consistency in these effects among several bioclimatic regions. We asked (1) whether traits predicted species' responses to environmental gradients (i.e. their niches), (2) whether these same traits could predict co-occurrence patterns and (3) how consistent were niches and the role of traits among study regions. Location Boreal forests in Norway and Finland, temperate forests in Germany. Taxon Wood-living (saproxylic) beetles. Methods We compiled capture records of 468 wood-living beetle species from the three regions, along with nine morphological and ecological species traits. Eight climatic and forest covariates were also collected. We used Bayesian hierarchical joint species distribution models to estimate the influence of traits and phylogeny on species' niches. We also tested for correlations between species associations and trait similarity. Finally, we compared species niches and the effects of traits among study regions. Results Traits explained some of the variability in species' niches, but their effects differed among study regions. However, substantial phylogenetic signal in species niches implies that unmeasured but phylogenetically structured traits have a stronger effect. Degree of trait similarity was correlated with species associations but depended idiosyncratically on the trait and region. Species niches were much more consistent-widespread taxa often responded similarly to an environmental gradient in each region. Main conclusions The inconsistent effects of traits among regions limit their current use in understanding beetle community assembly. Phylogenetic signal in niches, however, implies that better predictive traits can eventually be identified. Consistency of species niches among regions means niches may remain relatively stable under future climate and land use changes; this lends credibility to predictive distribution models based on future climate projections but may imply that species' scope for short-term adaptation is limited.