Browsing by Subject "electrophysiology"

Sort by: Order: Results:

Now showing items 1-3 of 3
  • Hatch, Robert J.; Mendis, G. Dulini C.; Kaila, Kai; Reid, Christopher A.; Petrou, Steven (2017)
    Gap junctions form electrical synapses that modulate neuronal activity by synchronizing action potential (AP) firing of cortical interneurons (INs). Gap junctions are thought to form predominantly within cortical INs of the same functional class and are therefore considered to act within discrete neuronal populations. Here, we challenge that view and show that the probability of electrical coupling is the same within and between regularspiking (RS) and fast-spiking (FS) cortical INs in 16-21 days old mice. Firing properties of these two populations were distinct from other INs types including neurogliaform and low-threshold spiking (LTS) cells. We also demonstrate that pre-junctional APs can depolarize post-junctional neurons and increase the probability of firing. Our findings of frequent gap junction coupling between functionally distinct IN subtypes suggest that cortical IN networks are much more extensive and heterogeneous than previously thought. This may have implications on mechanisms ranging from cognitive functions to modulation of pathological states in epilepsy and other neurological disorders.
  • Savolainen, Mari (Helsingfors universitet, 2011)
    Neuronal nicotinic receptors are widely expressed throughout the brain and they facilitate fast synaptic neurotransmission. They are also involved in regulation of the release of other neurotransmitters like GABA, dopamine and glutamate. The most common subtypes are alfa4beta2 and alfa7 subunits containing receptors. Neuronal nicotinic receptors are involved in nicotine addiction but also in many neurological diseases like Alzheimer's disease, schizophrenia, depression and attention deficit/hyperactivity disorder. The cholinergic stimulation enhances cognition in vivo and in human. There is not many drugs on the market that act via nicotinic receptors but many drug companies have new nicotinic agonists and antagonist under clinical research. When using nicotinic receptor agonists the problem is desensitization, which occurs in alfa7 nicotinic receptor rapidly after agonist exposure. When desensitized the receptor no longer responds to agonist even if it is there available to bind to receptor. The desensitization may lead to tachyphylaxis and losing of the clinical effect. Conventional agonists, like acetylcholine, bind to the binding site located in the extracellular part on nicotinic receptor subunit. There is also some other binding sites, which are called allosteric binding sites. It has been found out, that allosterically binding ligands, for example PNU-120596, can cause potentiation of agonist induced responses and/or prevent desensitization of receptor. These kinds of agents are called positive allosteric modulators and they are considered to be a new therapeutic option for CNS diseases containing cholinergic deficits. The mechanism of action of positive allosteric modulators is so far unclear. The purpose of my study was to characterize positive allosteric modulators on alfa7 nicotinic receptor. It had been found out earlier in the Millar laboratory that mutation L247T in the transmembrane domain converts positive allosteric modulators to agonists. The aim was to use site-directed mutagenesis to generate mutation in the agonist-binding site of alfa7 and alfa7L247T receptors and see how it effects on the ability of PNU-120596 to act as an agonist on the receptor. Second aim was to generate a mutation in the transmembrane part of the receptor to an assumed binding site of allosteric potentiators' and test how it effects on allosteric potentiator's ability to act as an agonist on the alfa7L247T. Mutated receptors were expressed on oocytes by microinjeting the mRNA into oocyte. The function of receptors was studied with electrophysiology using two-electrode voltageclamp technique. All the mutations were successfully inserted in nicotinic receptor alfa7 and alfa7L247T. Mutation in orthosteric agonist binding site had a very profound effect on wild type alfa7 receptor; it had an effect on either acetylcholine binding or receptor gating. It was not possible to record any proper responses neither with acetylcholine nor with PNU-120596. In the double-mutated receptor alfa7W149M/L247T the W149M mutation had a much greater effect on dose-response curves than it had on PNU-120596 curves compared with alfa7L247T. The transmembrane domain mutation M253L did not have much effect on PNU-120596's ability to act as an agonist to alfa7L247T and either it did not effect on acetylcholine dose-response curves. The results from this study support the previous results that the binding site of positive allosteric modulators is located in the transmembrane domain of the alfa7 receptor. The results are little controversial with the M253L mutation but because the L247T mutation has so profound effect on the function on alfa7 receptor it might be that it masks the other mutation which is located quite close to it. On the other hand it might be so that the amino acid M253 has only effect on the receptor's ability to be potentiated not the allosteric binding.
  • Mattsson, Gustav; Magnusson, Peter; Raatikainen, Pekka (2020)
    Right ventricular outflow tachycardia initially refractory to radiofrequency ablation may be successfully treated after radiofrequency ablation at multiple sites. Repeated radiofrequency ablations as well as cooperation across borders with referral to an international center of excellence may be required in complicated cases