Browsing by Subject "emissions"

Sort by: Order: Results:

Now showing items 1-20 of 61
  • Heiskanen, Ilmari (Helsingin yliopisto, 2021)
    Interest towards indoor air quality has increased for several decades from human health perspective. In order to evaluate the quality of indoor air in terms of volatile organic compound (VOC) levels, robust analytical procedures and techniques must be used for indoor air VOC measurements. Since indoor building materials are the greatest source of indoor VOC emissions, same kind of procedures must be used for analysis of emission rates from building materials and their surfaces. Theory part of this thesis reviews background of VOCs and human health, legislation and guideline values, common building materials with emissions and used sampling techniques/approaches for indoor air sampling and surface material emission rate sampling & analysis. Discussed sampling techniques include, for example, material emission test chambers, field and laboratory test emission cells, solid phase microextraction (SPME) fibre applications and Radiello passive samplers. Also new innovative approaches are discussed. Used common analysis instruments are Gas Chromatography (GC) with Mass Spectrometer (MS) or Flame Ionization Detector (FID) for VOCs and High-Performance Liquid Chromatography-Ultraviolet/Visible light detector (HPLC-UV/VIS) for carbonyl VOCs (e.g. formaldehyde) after suitable derivatization. Analytical procedures remain highly ISO 16000 standard series orientated even in recent studies. In addition, potential usage of new modern miniaturized sample collection devices SPME Arrow and In-tube extraction (ITEX) used in experimental part of this thesis are discussed as an addition to indoor air and VOC emission studies. The aim of the experimental part of this thesis was to develop calibrations for selected organic nitrogen compounds with SPME Arrow and ITEX sampling techniques and test the calibration with indoor and outdoor samples. A calibration was successfully carried out with SPME Arrow (MCM-41 sorbent), ITEX (MCM-TP sorbent) and ITEX (Polyacrylonitrile (PAN) 10 % sorbent) with permeation system combined with GC-MS for the following selected organic nitrogen compounds: triethylamine, pyridine, isobutyl amine, allylamine, trimethylamine, ethylenediamine, dipropyl amine, hexylamine, 1,3-diaminopropane, 1-methyl-imidazole, N, N-dimethylformamide, 1,2-diaminocyclohexane, 1-nitropropane and formamide. The overall quality of the calibration curves was evaluated, and the calibrations were compared in terms of linear range, relative standard deviation (RSD) % for accepted calibration levels and obtained Limits of Detection (LOD) values. Also, ways to improve the calibrations were discussed. The calibration curves were tested with real indoor and outdoor samples and quantitative, as well as semi-quantitative, results were obtained.
  • Vihanninjoki, Vesa (Finnish Environment Institute, 2014)
    Reports of the Finnish Environment Institute 41/2014
    Due to the Arctic climate change and the related diminishing of Arctic sea ice cover, the general conditions for Arctic shipping are changing. The retreat of Arctic sea ice opens up new routes for maritime transportation, both trans-Arctic passages and new alternatives within the Arctic region. Hence the amount of Arctic shipping is presumed to increase. Despite the observed development, the sailing conditions in the Arctic waters will remain challenging. Thus particular attention will be required also in the future with regard to crew, fleet and other infrastructural issues. In addition to other apparent challenges and risks, the increase in Arctic shipping will lead to an increased amount of emissions. The increased emissions may have considerable and unpredictable influences to the particularly sensitive Arctic environment. With regard to emission species, especially black carbon is presumed to have climatic sig-nificance within the Arctic context. Black carbon absorbs solar radiation very effectively, and when deposited to snow or sea ice cover, it may notably alter the radiative equilibrium of the Arctic region. The increased Arctic marine activities produce black carbon emissions, whose climate impacts are assessed in this report.
  • Niemistö, Johanna; Myllyviita, Tanja; Judl, Jáchym; Holma, Anne; Sironen, Susanna; Mattila, Tuomas; Antikainen, Riina; Leskinen, Pekka (2019)
    International Journal of Sustainable Development & World Ecology 26 (7): 625-634
    Small and medium-sized enterprises (SMEs) have a substantial role in the economy and job creation, but they are a remarkable source of environmental impacts. SMEs often lack skills and resources to compile environmental impact assessments; Streamlined Life Cycle Analysis (LCA) can provide efficient tools for this. An application of streamlined LCA relying heavily on database data, LCA clinic, was developed and tested on 23 SMEs in Finland. The climate change impacts were mainly caused by the production of raw materials, electricity and heating, whereas packaging and transportation were not influential. A significant amount of emissions were indirect, i.e. caused by production of raw materials. Thus, decreasing emissions from raw material production or selecting raw materials with a smaller environmental load could be a more efficient way to decrease emissions than reducing direct emissions such as those from electricity use. Lack of data in the LCA-databases was considered a challenge. An access to regionally customised datasets is important for the implementation of LCA clinics. Company feedback indicated that LCA clinics were useful in climate-friendly product design and increased environmental awareness, but did not lead to immediate actions to reduce emissions because of inadequate investment capabilities. Company managers had limited possibilities to use the results in marketing as comparative assessments would require a full LCA. Many company managers were willing to pay a fee sufficient to cover the costs of an LCA clinic, but some considered that the costs should be covered by external funding sources.
  • Böttcher, Kristin; Paunu, Ville-Veikko; Kupiainen, Kaarle; Zhizhin, Mikhail; Matveev, Alexey; Savolahti, Mikko; Savolahti, Mikko; Klimont, Zbigniew; Väätäinen, Sampsa; Lamberg, Heikki; Karvosenoja, Niko (Elsevier, 2021)
    Atmospheric Environment 254 (2021), 118390
    Gas flaring in the oil and gas industry has been identified as an important source of anthropogenic black carbon (BC) affecting the climate, particularly in the Arctic. Our study provides spatially-explicit estimates of BC emissions from flaring in Russia utilising state-of-the-art methodology for determining the emission factors. We utilised satellite time series of the flared gas volume from Visible Infrared Imaging Radiometer Suite (VIIRS) for the period 2012 to 2017, supplemented with information on the gas and oil field type. BC emissions at flaring locations were calculated based on field type-specific emission factors, taking into account different gas compositions in each field type. We estimate that the average annual BC emissions from flaring in Russia were 68.3 Gg/year, with the largest proportion stemming from oil fields (82%). We observed a decrease in the yearly emissions during the period 2012 to 2017 with regional differences in the trend. Our results highlight the importance of detailed information on gas composition and the stage of oil and gas separation of the flared gas to reduce uncertainties in the BC emission estimates.
  • Grönroos, Juha; Munther, Joonas; Luostarinen, Sari (Finnish Environment Institute, 2017)
    Reports of the Finnish Environment Institute 37/2017
    Agricultural gaseous nitrogen emissions are mostly related to manure management, grazing and fertilisation. These emissions include ammonia (NH3), nitrous oxide (N2O), nitric oxide (NO) and di-nitrogen (N2). Most of the non-methane volatile organic compounds (NMVOC) emissions originate from livestock farming, but also from cultivated crops. All these emissions are inventoried and reported for the UN Convention on Long-range Transboundary Air Pollution (CLRTAP), EU National Emission Ceilings Directive (2001/81/EC) and the UN Framework on Climate Change (UNFCC). In Finland, a specific national model for gaseous nitrogen emissions from agriculture has been used for the inventory since 1998. The revised calculation model documented here is tied to the Finnish Normative Manure System, which provides data on manure quality and quantity for various livestock categories. The emission calculation follows the flow of total ammoniacal nitrogen (TAN) and total nitrogen (N) through the manure management systems, starting from excretion and ending at manure spreading. The main manure management phases considered in the calculation are livestock housing, manure storing and manure field application. The calculation also embeds estimations on emissions from grazing and outdoor yards, as well as emissions from the use of mineral fertilisers. The nitrogen calculation model provides data for the calculation of agricultural NMVOC emissions. All calculations are constructed in compliance with the Tier 2 method of the EMEP/EEA emission inventory guidebook (2016).
  • Nissinen, Ari; Savolainen, Hannu (Finnish Environment Institute, 2020)
    Reports of the Finnish Environment Institute 15en/2019
    The aim of the research was to analyse the carbon footprint (i.e. life-cycle greenhouse gas emissions) and raw material requirements (RMR) for public procurement and household consumption. The main method used was the environmentally extended input-output model ENVIMAT, supplemented with statistics on public procurement. Greenhouse gas emissions for the final domestic demand, i.e. the consumption-based emissions of Finland, amounted to 73.4 million tons carbon dioxide equivalents (Mt CO2e) in 2015. This can also be seen as the carbon footprint of Finland, and it was 33 % bigger than the territorial emissions which form the basis of the official national inventories. The carbon footprint for public procurement in 2015 was 8.3 Mt CO2e. State procurement accounted for 1.78 Mt, municipalities for 4.73 Mt CO2e, and federations of municipalities (FM) for 1.79 Mt CO2e. The carbon footprint of investments made by public organisations amounted to 2.7 Mt CO2e. In state procurement 42 % of the emissions were caused by buying services, 38 % from goods, 12 % from rents, and 8 % were due to other costs. Buying goods caused the largest emission share in the defence administration (55 %), whereas services caused the largest share (81 %) in the traffic and communications sector. In the procurement made by municipalities and federations of municipalities 42–43 % of emissions were caused by the procurement of services and 52 % from goods. Looking at state administration, defence caused the largest share (43 %) of emissions, and next were the traffic and communications (21 %) and the ministry of the interior (10 %). Urban municipalities caused 3.33 Mt of emissions, and semi-urban municipalities caused 0.69 Mt and rural municipalities 0.71 Mt. Hospital districts had the largest emissions (1.03 Mt) among the federations of municipalities. The raw material requirement of public procurement amounted to 19.5 Mt in 2015. The share of state procurement was 34 %, whereas municipalities and FM caused the remaining 66 %. The RMR of investments made by public organisations amounted to 25.7 Mt. The RMR of household consumption in 2015 was 64.8 Mt. The share of other products and services came to 32 %, housing including energy use amounted to 30 %, foodstuffs and non-alcoholic beverages contributed 26 % and transport 12 %. Regarding the carbon footprint of households in 2016, transport caused 30 % of all carbon emission equivalents, housing and energy use 29 %, foodstuffs and non-alcoholic beverages 19 %, and other products and services 22 %. The overall carbon footprint was 53.4 Mt CO2e in 2000 and 60.1 Mt in 2016 (12.5 % growth). Emissions were the largest in 2007 (66.6 Mt). A structural decomposition of the change in the carbon footprint from 2000 to 2016 shows three major factors: change in consumption expenditure (which alone would change the footprint by +30.7 %), change in consumption structure (-5.7 %) and technological change (-12.5 %). The annual average carbon footprint per capita varied between 10.1 and 12.6 tons of CO2e. Statistics Finland’s Household Budget Survey was used to analyse different households. In the lowest income decile the carbon footprint was 7.2 t CO2e per consumption unit, and in the highest income decile it was 19.0. The emission intensity (i.e. emissions per euro consumed) did not have any clear relationship to the income. Regarding types of households, couples without children and couples with children had the largest footprint per consumption unit. When housing was not taken into account, households in inner urban areas had the smallest and households in peri-urban and rural areas close to urban areas had the largest carbon footprint per consumption unit. Of the consumption sectors, transport had the highest emission intensity (0.81 kg CO2e /€). Additionally, food had a high emission intensity (0.76). The two expenditure categories related to housing had smaller intensities (0.51 and 0.45), and other goods and services had the smallest (0.24). The average emission intensity was around 0.5.
  • Iversen, L.L.; Winkel, A.; Baastrup-Spohr, L.; Hinke, A.B.; Alahuhta, J.; Baattrup-Pedersen, A.; Birk, S.; Brodersen, P.; Chambers, P. A.; Ecke, F; Feldmann, T.; Gebler, D.; Heino, J.; Jespersen, T. S.; Moe, S. J.; Riis, T.; Sass, L.; Vestergaard, O.; Maberly, S. C.; Sand-Jensen, K.; Pedersen, O. (American Association for the Advancement of Science, 2019)
    Science Vol. 366, Issue 6467, pp. 878-881
    Unlike in land plants, photosynthesis in many aquatic plants relies on bicarbonate in addition to carbon dioxide (CO2) to compensate for the low diffusivity and potential depletion of CO2 in water. Concentrations of bicarbonate and CO2 vary greatly with catchment geology. In this study, we investigate whether there is a link between these concentrations and the frequency of freshwater plants possessing the bicarbonate use trait. We show, globally, that the frequency of plant species with this trait increases with bicarbonate concentration. Regionally, however, the frequency of bicarbonate use is reduced at sites where the CO2 concentration is substantially above the air equilibrium, consistent with this trait being an adaptation to carbon limitation. Future anthropogenic changes of bicarbonate and CO2 concentrations may alter the species compositions of freshwater plant communities.
  • Amiri, Ali; Ottelin, Juudit; Sorvari, Jaana; Junnila, Seppo (IOP Publishing, 2020)
    Environmental Research Letters 15 (2020) 094076
    Although buildings produce a third of greenhouse gas emissions, it has been suggested that they might be one of the most cost-effective climate change mitigation solutions. Among building materials, wood not only produces fewer emissions according to life-cycle assessment but can also store carbon. This study aims to estimate the carbon storage potential of new European buildings between 2020 and 2040. While studies on this issue exist, they mainly present rough estimations or are based on a small number of case studies. To ensure a reliable estimation, 50 different case buildings were selected and reviewed. The carbon storage per m2 of each case building was calculated and three types of wooden buildings were identified based on their carbon storage capacity. Finally, four European construction scenarios were generated based on the percentage of buildings constructed from wood and the type of wooden buildings. The annual captured CO2 varied between 1 and 55 Mt, which is equivalent to between 1% and 47% of CO2 emissions from the cement industry in Europe. This study finds that the carbon storage capacity of buildings is not significantly influenced by the type of building, the type of wood or the size of the building but rather by the number and the volume of wooden elements used in the structural and non-structural components of the building. It is recommended that policymakers aiming for carbon-neutral construction focus on the number of wooden elements in buildings rather than more general indicators, such as the amount of wood construction, or even detailed indirect indicators, such as building type, wood type or building size. A practical scenario is proposed for use by European decision-makers, and the role of wood in green building certification is discussed.
  • von Salzen, Knut; Whaley, Cynthia H.; Anenberg, Susan C.; Van Dingenen, Rita; Klimont, Zbigniew; Flanner, Mark G.; Mahmood, Rashed; Arnold, Stephen R.; Beagley, Stephen; Chien, Rong-You; Christensen, Jesper H.; Eckhardt, Sabine; Ekman, Annica M. L.; Evangeliou, Nikolaos; Faluvegi, Greg; Fu, Joshua S.; Gauss, Michael; Gong, Wanmin; Hjorth, Jens L.; Im, Ulas; Krishnan, Srinath; Kupiainen, Kaarle; Kühn, Thomas; Langner, Joakim; Law, Kathy S.; Marelle, Louis; Olivié, Dirk; Onishi, Tatsuo; Oshima, Naga; Paunu, Ville-Veikko; Peng, Yiran; Plummer, David; Pozzoli, Luca; Rao, Shilpa; Raut, Jean-Christophe; Sand, Maria; Schmale, Julia; Sigmond, Michael; Thomas, Manu A.; Tsigaridis, Kostas; Tsyro, Svetlana; Turnock, Steven T.; Wang, Minqi; Winter, Barbara (Springer Science and Business Media LLC, 2022)
    Communications Earth & Environment
    A tighter integration of modeling frameworks for climate and air quality is urgently needed to assess the impacts of clean air policies on future Arctic and global climate. We combined a new model emulator and comprehensive emissions scenarios for air pollutants and greenhouse gases to assess climate and human health co-benefits of emissions reductions. Fossil fuel use is projected to rapidly decline in an increasingly sustainable world, resulting in far-reaching air quality benefits. Despite human health benefits, reductions in sulfur emissions in a more sustainable world could enhance Arctic warming by 0.8 degrees C in 2050 relative to the 1995-2014, thereby offsetting climate benefits of greenhouse gas reductions. Targeted and technically feasible emissions reduction opportunities exist for achieving simultaneous climate and human health co-benefits. It would be particularly beneficial to unlock a newly identified mitigation potential for carbon particulate matter, yielding Arctic climate benefits equivalent to those from carbon dioxide reductions by 2050. Reduction in key air pollutants, especially particulate carbon, can help mitigate Arctic warming with associated benefits for global climate and human health, according to Earth system model simulations under future emissions scenarios.
  • Kupiainen, Kaarle Juhana; Aamaas, Borgar; Savolahti, Mikko; Karvosenoja, Niko; Paunu, Ville-Veikko (European Geosciences Union, 2019)
    Atmospheric Chemistry and Physics 19, 7743–7757
    We present a case study where emission metric values from different studies are applied to estimate global and Arctic temperature impacts of emissions from a northern European country. This study assesses the climate impact of Finnish air pollutants and greenhouse gas emissions from 2000 to 2010, as well as future emissions until 2030. We consider both emission pulses and emission scenarios. The pollutants included are SO2, NOx, NH3, non-methane volatile organic compound (NMVOC), black carbon (BC), organic carbon (OC), CO, CO2, CH4 and N2O, and our study is the first one for Finland to include all of them in one coherent dataset. These pollutants have different atmospheric lifetimes and influence the climate differently; hence, we look at different climate metrics and time horizons. The study uses the global warming potential (GWP and GWP*), the global temperature change potential (GTP) and the regional temperature change potential (RTP) with different timescales for estimating the climate impacts by species and sectors globally and in the Arctic. We compare the climate impacts of emissions occurring in winter and summer. This assessment is an example of how the climate impact of emissions from small countries and sources can be estimated, as it is challenging to use climate models to study the climate effect of national policies in a multi-pollutant situation. Our methods are applicable to other countries and regions and present a practical tool to analyze the climate impacts in multiple dimensions, such as assessing different sectors and mitigation measures. While our study focuses on short-lived climate forcers, we found that the CO2 emissions have the most significant climate impact, and the significance increases over longer time horizons. In the short term, emissions of especially CH4 and BC played an important role as well. The warming impact of BC emissions is enhanced during winter. Many metric choices are available, but our findings hold for most choices.
  • Thomas, Steven Job; Li, Haiyan; Praplan, Arnaud P.; Hellén, Heidi; Bianchi, Federico (Frontiers, 2022)
    Frontiers in forests and global change
    Biogenic volatile organic compounds (BVOCs) are known to strongly influence the global climate by affecting various atmospheric constituents such as oxidants and aerosols. Among the several BVOCs that are emitted continuously into the atmosphere, studies have shown that up to 96% of the emissions have been missed out by current analytical techniques. In this study, we used a Vocus proton-transfer-reaction time-of-flight mass spectrometer (Vocus) to characterize and quantify emissions from a branch of a downy birch tree at a boreal forest site in Hyytiälä, Finland in August 2019. During the measurement period, we were able to observe real-time emissions of hydrocarbons with up to 20 carbon atoms and oxygenated compounds (OVOCs) with up to 4 oxygen atoms. OVOCs accounted for around 90% of the total observed emissions with the largest contribution from C8H8O3 (0.37 µgg−1h −1 ; ∼60% of total). For the first time, emissions of diterpenes (C20H32, C20H36, and C20H38) were observed from downy birch tree, although in minor quantities (0.1% of total emissions). During this late growing season, C10H16 and C10H14 contributed ∼7% in total emissions, while the sum of C5H8, C15H22, and C15H24 contributed around ∼3%. The branch experienced abiotic stress during the measurement period, which might explain the unusually high emissions of C8H8O3. Standardized emission potentials are reported for all compounds using two Guenther algorithms. While emissions of most compounds fit well with either of the two algorithms, emissions of certain compounds like C8H8O3 could not be explained by either suggesting theinfluence of other factors besides temperature and light. Vocus PTR-TOFMS can help identify a diverse range of molecules even if emitted in minute quantities. The BVOCs detected from birch emissions may be important in the formation of secondary organic aerosols but their implications in the atmosphere need to be verified with further studies.
  • Salo, Marja; Nissinen, Ari (Suomen ympäristökeskus, 2017)
    Reports of the Finnish Environment Institute 30/2017
    Climate change mitigation requires action in all spheres of society. The role of household consumption is often overlooked. However, 72% of global greenhouse gas (GHG) emissions are related to household consumption, while the rest stem from government consumption and investments. The result from a Finnish study is quite similar: households accounted for 68% of the GHG emissions of domestic final consumption in Finland, whereas government consumption and investments were responsible for the other 32% The key question in this report is: How much can a typical Finn decrease one’s GHG emissions with consumption decisions? To address this question, we took the average GHG emissions from consumption as a starting point. In Finland in 2010, the average per capita GHG emissions from consumption expenditure was 11.5 tonnes of CO2e. Between 2000 and 2013, the average per capita GHG emissions fluctuated from 9.6 tonnes to 11.8 tonnes. The per capita consumption carbon footprint in Finland is on the high end of the European scale but smaller compared to Australia and the United States, for instance. We listed measures that an ordinary Finnish consumer can use to decrease their GHG emissions with existing technology and solutions, and estimated the potential to avoid emissions with these activities. We focused on the most important sources of GHG emissions in Finland, including housing and especially energy-related emissions, private car travel and food choices. We also examined the consumption of goods and services, although in that particular category the emissions consist of a wide range of goods and services, and the potential of single or small numbers of actions is challenging to define. The GHG emissions include housing, travel, food, consumption of other goods and services. We used the consumption perspective, i.e. the emissions of consumption in Finnish households were taken into account regardless of their geographic origin. Therefore, the embodied emissions of imported goods were included. We estimated that the carbon footprint of an average Finn could be decreased from 11.5 tkg of CO2e to 7.2 tkg. In this paper, we present the measures for housing, travel, food, and goods and services that can be used to reach these savings. While consumption choices have potential in mitigating climate change, we note that there are barriers in reducing GHG emissions with consumption choices. The solutions to overcome the barriers can be market-based, i.e. business models in which the product or service produces less GHG emissions. Informational measures such as labelling help consumers choose products and services with lower GHG emissions. Public policies also play a role in speeding up product development, as shown by the examples of energy labelling of home appliances and phasing out inefficient lighting solutions. Informational measures can also include tools such as carbon footprint calculators and campaigns to raise awareness and engage people to take action. In this report we focused on the GHG emissions. However, other environmental footprints and indicators also show the unsustainability of current consumption patterns.
  • Hildén, Mikael; Kupiainen, Kaarle; Forsius, Martin; Salonen, Raimo O. (Finnish Environment Institute, 2017)
    SYKE Policy Brief
  • Forsius, Martin; Kujala, Heini; Minunno, Francesco; Holmberg, Maria; Leikola, Niko; Mikkonen, Ninni; Autio, Iida; Paunu, Ville-Veikko; Tanhuanpää, Topi; Hurskainen, Pekka; Mäyrä, Janne; Kivinen, Sonja; Keski-Saari, Sarita; Kosenius, Anna-Kaisa; Kuusela, Saija; Virkkala, Raimo; Viinikka, Arto; Vihervaara, Petteri; Akujarvi, Anu; Bäck, Jaana; Karvosenoja, Niko; Kumpula, Timo; Kuzmin, Anton; Mäkelä, Annikki; Moilanen, Atte; Ollikainen, Markku; Pekkonen, Minna; Peltoniemi, Mikko; Poikolainen, Laura; Rankinen, Katri; Rasilo, Terhi; Tuominen, Sakari; Valkama, Jari; Vanhala, Pekka; Heikkinen, Risto K (2021)
    The challenges posed by climate change and biodiversity loss are deeply interconnected. Successful co-managing of these tangled drivers requires innovative methods that can prioritize and target management actions against multiple criteria, while also enabling cost-effective land use planning and impact scenario assessment. This paper synthesises the development and application of an integrated multidisciplinary modelling and evaluation framework for carbon and biodiversity in forest systems. By analysing and spatio-temporally modelling carbon processes and biodiversity elements, we determine an optimal solution for their co-management in the study landscape. We also describe how advanced Earth Observation measurements can be used to enhance mapping and monitoring of biodiversity and ecosystem processes. The scenarios used for the dynamic models were based on official Finnish policy goals for forest management and climate change mitigation. The development and testing of the system were executed in a large region in southern Finland (Kokemäenjoki basin, 27,024 km2) containing highly instrumented LTER (Long-Term Ecosystem Research) stations; these LTER data sources were complemented by fieldwork, remote sensing and national data bases. In the study area, estimated total net emissions were currently 4.2 TgCO2eq a−1, but modelling of forestry measures and anthropogenic emission reductions demonstrated that it would be possible to achieve the stated policy goal of carbon neutrality by low forest harvest intensity. We show how this policy-relevant information can be further utilized for optimal allocation of set-aside forest areas for nature conservation, which would significantly contribute to preserving both biodiversity and carbon values in the region. Biodiversity gain in the area could be increased without a loss of carbon-related benefits.
  • Schneider, Rochelle; Masselot, Pierre; Vicedo-Cabrera, Ana M.; Sera, Francesco; Blangiardo, Marta; Forlani, Chiara; Douros, John; Jorba, Oriol; Adani, Mario; Kouznetsov, Rostislav; Couvidat, Florian; Arteta, Joaquim; Raux, Blandine; Guevara, Marc; Colette, Augustin; Barré, Jérôme; Peuch, Vincent-Henri; Gasparrini, Antonio (Nature Publishing Group, 2022)
    Scientific reports
    Previous studies have reported a decrease in air pollution levels following the enforcement of lockdown measures during the first wave of the COVID-19 pandemic. However, these investigations were mostly based on simple pre-post comparisons using past years as a reference and did not assess the role of different policy interventions. This study contributes to knowledge by quantifying the association between specific lockdown measures and the decrease in ­NO2, ­O3, ­PM2.5, and ­PM10 levels across 47 European cities. It also estimated the number of avoided deaths during the period. This paper used new modelled data from the Copernicus Atmosphere Monitoring Service (CAMS) to define business-as-usual and lockdown scenarios of daily air pollution trends. This study applies a spatio-temporal Bayesian non-linear mixed effect model to quantify the changes in pollutant concentrations associated with the stringency indices of individual policy measures. The results indicated non-linear associations with a stronger decrease in ­NO2 compared to ­PM2.5 and ­PM10 concentrations at very strict policy levels. Differences across interventions were also identified, specifically the strong effects of actions linked to school/workplace closure, limitations on gatherings, and stay-at-home requirements. Finally, the observed decrease in pollution potentially resulted in hundreds of avoided deaths across Europe.
  • Kuhn, Thomas; Kupiainen, Kaarle; Miinalainen, Tuuli; Kokkola, Harri; Paunu, Ville-Veikko; Laakso, Anton; Tonttila, Juha; Van Dingenen, Rita; Kulovesi, Kati; Karvosenoja, Niko; Lehtonen, Kari E.J. (EGU, 2020)
    Atmospheric Chemistry and Physics 20 9 (2020)
    We use the ECHAM-HAMMOZ aerosol-climate model to assess the effects of black carbon (BC) mitigation measures on Arctic climate. To this end we constructed several mitigation scenarios that implement all currently existing legislation and then implement further reductions of BC in a successively increasing global area, starting from the eight member states of the Arctic Council, expanding to its active observer states, then to all observer states, and finally to the entire globe. These scenarios also account for the reduction of the co-emitted organic carbon (OC) and sulfate (SU). We find that, even though the additional BC emission reductions in the member states of the Arctic Council are small, the resulting reductions in Arctic BC mass burdens can be substantial, especially in the lower troposphere close to the surface. This in turn means that reducing BC emissions only in the Arctic Council member states can reduce BC deposition in the Arctic by about 30 % compared to the current legislation, which is about 60 % of what could be achieved if emissions were reduced globally. Emission reductions further south affect Arctic BC concentrations at higher altitudes and thus only have small additional effects on BC deposition in the Arctic. The direct radiative forcing scales fairly well with the total amount of BC emission reduction, independent of the location of the emission source, with a maximum direct radiative forcing in the Arctic of about −0.4 W m−2 for a global BC emission reduction. On the other hand, the Arctic effective radiative forcing due to the BC emission reductions, which accounts for aerosol–cloud interactions, is small compared to the direct aerosol radiative forcing. This happens because BC- and OC-containing particles can act as cloud condensation nuclei, which affects cloud reflectivity and lifetime and counteracts the direct radiative forcing of BC. Additionally, the effective radiative forcing is accompanied by very large uncertainties that originate from the strong natural variability of meteorology, cloud cover, and surface albedo in the Arctic. We further used the TM5-FASST model to assess the benefits of the aerosol emission reductions for human health. We found that a full implementation in all Arctic Council member and observer states could reduce the annual global number of premature deaths by 329 000 by the year 2030, which amounts to 9 % of the total global premature deaths due to particulate matter.
  • Harni, Sami D.; Saarikoski, Sanna; Kuula, Joel; Helin, Aku; Aurela, Minna; Niemi, Jarkko V.; Kousa, Anu; Rönkkö, Topi; Timonen, Hilkka (Pergamon., 2023)
    Atmospheric environment
    Particle size distribution is a major factor in the health and climate effects of ambient aerosols, and it shows a large variation depending on the prevailing atmospheric emission sources. In this work, the particle number size distributions of ambient air were investigated at a suburban detached housing area in northern Helsinki, Finland, during a half-year period from winter to summer of 2020. The measurements were conducted with a scanning mobility particle sizer (SMPS) with a particle size range of 16–698 nm (mobility diameter), and the events with a dominant particle source were identified systematically from the data based on the time of the day and different particle physical and chemical properties. During the measurement period, four different types of events with a dominant contribution from either wood-burning (WB), traffic (TRA), secondary biogenic (BIO), or long-range transported (LRT) aerosol were observed. The particle size was the largest for the LRT events followed by BIO, WB, and TRA events with the geometric mean diameters of 72, 62, 57, and 41 nm, respectively. BIO and LRT produced the largest particle mode sizes followed by WB, and TRA with the modes of 69, 69, 46, and 25 nm, respectively. Each event type had also a noticeably different shape of the average number size distribution (NSD). In addition to the evaluation of NSDs representing different particle sources, also the effects of COVID-19 lockdown on specific aerosol properties were studied as during the measurement period the COVID-19 restrictions took place greatly reducing the traffic volumes in the Helsinki area in the spring of 2020. These restrictions had a significant contribution to reducing the concentrations of NOx and black carbon originating from fossil fuel combustion concentration, but insignificant effects on other studied variables such as number concentration and size distribution or particle mass concentrations (PM1, PM2.5, or PM10).
  • Thompson, R. L.; Groot Zwaaftink, C. D.; Brunner, D.; Tsuruta, Aki; Aalto, Tuula; Raivonen, Maarit; Crippa, M.; Solazzo, E.; Guizzardi, D.; Regnier, P.; Maisonnier, M. (2022)
    The effect of the 2018 extreme meteorological conditions in Europe on methane (CH4) emissions is examined using estimates from four atmospheric inversions calculated for the period 2005-2018. For most of Europe, we find no anomaly in 2018 compared to the 2005-2018 mean. However, we find a positive anomaly for the Netherlands in April, which coincided with positive temperature and soil moisture anomalies suggesting an increase in biogenic sources. We also find a negative anomaly for the Netherlands for September-October, which coincided with a negative anomaly in soil moisture, suggesting a decrease in soil sources. In addition, we find a positive anomaly for Serbia in spring, summer and autumn, which coincided with increases in temperature and soil moisture, again suggestive of changes in biogenic sources, and the annual emission for 2018 was 33 +/- 38% higher than the 2005-2017 mean. These results indicate that CH4 emissions fromareas where the natural source is thought to be relatively small can still vary due to meteorological conditions. At the European scale though, the degree of variability over 2005-2018 was small, and there was negligible impact on the annual CH4 emissions in 2018 despite the extreme meteorological conditions.
  • Amiri, Ali; Emami, Nargessadat; Ottelin, Juudit; Sorvari, Jaana; Marteinsson, Björn; Heinonen, Jukka; Junnila, Seppo (Elsevier, 2021)
    Energy and Buildings 241: 110962
    The construction and use of buildings consume a significant proportion of global energy and natural resources. Leadership in Energy and Environmental Design (LEED) is arguably the most international green building certification system and attempts to take actions to limit energy use of buildings and construct them sustainably. While there has been a wide range of research mainly focused on energy use and emission production during the operation phase of LEED-certified buildings, research on embodied emissions is rare. The aim of this study is to evaluate the efficiency of LEED regarding initial (pre-use) embodied emissions using life cycle assessment (LCA). The study comprised several steps using a designed model. In the first step, three optional building material scenarios were defined (optimized concrete, hybrid concrete-wood, and wooden buildings) in addition to the base case concrete building located in Iceland. Second, an LCA was conducted for each scenario. Finally, the number of LEED points and the level of LEED certification was assessed for all studied scenarios. In addition, a comparison regarding embodied emissions consideration between LEED and Building Research Establishment Environmental Assessment Method (BREEAM) as mostly used green certificate was conducted in the discussion section. The LCA showed the lowest environmental impact for the wooden building followed by the hybrid concrete-wood building. In the LEED framework, wooden and hybrid scenarios obtained 14 and 8 points that were related to material selection. Among these points, only 3 (out of a total of 110 available points) were directly accredited to embodied emissions. The study recommends that the green building certificates increase the weight of sustainable construction materials since the significance of embodied emissions is substantially growing along with the current carbon neutrality goals. As most of the materials for building construction are imported into Iceland, this study is useful for locations similar to Iceland, while overall it is beneficial for the whole world regarding climate change mitigation.
  • Hirvonen, Janne; Jokisalo, Juha; Sankelo, Paula; Niemelä, Tuomo; Kosonen, Risto (MDPI, 2020)
    Buidings 10 12 (2020)
    Energy retrofitting of buildings shows great potential in reducing CO2 emissions. However, most retrofitting studies only focus on a single building type. This paper shows the relative potential in six Finnish building types, to identify possible focus areas for future retrofits in Finland. Data from previous optimization studies was used to provide optimal cases for comparison. Energy demand of the buildings was generated through dynamic simulation with the IDA-ICE software. The cases were compared according to emissions reduction, investment and life cycle cost. It was found that, in all buildings, it was possible to reduce emissions cost-neutrally by 20% to 70% in buildings with district heating and by 70% to 95% using heat pumps. Single-family homes with oil or wood boilers switching to heat pumps had the greatest emission reduction potential. More stringent requirements for energy efficiency could be mandated during building renovation.