Browsing by Subject "endosymbiosis"

Sort by: Order: Results:

Now showing items 1-3 of 3
  • Zheng, Shuyu; Poczai, Peter; Hyvönen, Jaakko; Tang, Jing; Amiryousefi, Ali (2020)
    Understanding the complexity of genomic structures and their unique architecture is linked with the power of visualization tools used to represent these features. Such tools should be able to provide a realistic and scalable version of genomic content. Here, we present an online organelle plotting tool focused on chloroplasts, which were developed to visualize the exclusive structure of these genomes. The distinguished unique features of this program include its ability to represent the Single Short Copy (SSC) regions in reverse complement, which allows the depiction of the codon usage bias index for each gene, along with the possibility of the minor mismatches between inverted repeat (IR) regions and user-specified plotting layers. The versatile color schemes and diverse functionalities of the program are specifically designed to reflect the accurate scalable representation of the plastid genomes. We introduce a Shiny app website for easy use of the program; a more advanced application of the tool is possible by further development and modification of the downloadable source codes provided online. The software and its libraries are completely coded in R, available at https://irscope.shinyapps.io/chloroplot/.
  • Radecker, Nils; Pogoreutz, Claudia; Gegner, Hagen M.; Cardenas, Anny; Roth, Florian; Bougoure, Jeremy; Guagliardo, Paul; Wild, Christian; Pernice, Mathieu; Raina, Jean-Baptiste; Meibom, Anders; Voolstra, Christian R. (2021)
    Recurrent mass bleaching events are pushing coral reefs world-wide to the brink of ecological collapse. While the symptoms and consequences of this breakdown of the coral-algal symbiosis have been extensively characterized, our understanding of the underlying causes remains incomplete. Here, we investigated the nutrient fluxes and the physiological as well as molecular responses of the widespread coral Stylophora pistillata to heat stress prior to the onset of bleaching to identify processes involved in the break-down of the coral-algal symbiosis. We show that altered nutrient cycling during heat stress is a primary driver of the functional breakdown of the symbiosis. Heat stress increased the metabolic energy demand of the coral host, which was compensated by the catabolic degradation of amino acids. The resulting shift from net uptake to release of ammonium by the coral holobiont subsequently promoted the growth of algal symbionts and retention of photosynthates. Together, these processes form a feedback loop that will gradually lead to the decoupling of carbon translocation from the symbiont to the host. Energy limitation and altered symbiotic nutrient cycling are thus key factors in the early heat stress response, directly contributing to the breakdown of the coral-algal symbiosis. Interpreting the stability of the coral holobiont in light of its metabolic interactions provides a missing link in our understanding of the environmental drivers of bleaching and may ultimately help uncover fundamental processes underpinning the functioning of endosymbioses in general.
  • Duplouy, Anne; Nair, Abhilash; Nyman, Toshka; van Nouhuys, Saskya (2021)
    Population bottlenecks associated with founder events strongly impact the establishment and genetic makeup of populations. In addition to their genotype, founding individuals also bring along symbionts that can manipulate the phenotype of their host, affecting the host population establishment, dynamics and evolution. Thus, to understand introduction, invasion, and spread, we should identify the roles played by accompanying symbionts. In 1991, the parasitoid wasp, Hyposoter horticola, and its associated hyperparasitoid were accidentally introduced from the main Åland islands, Finland, to an isolated island in the archipelago, along with their host, the Glanville fritillary butterfly. Though the receiving island was unoccupied, the butterfly was present on some of the small islands in the vicinity. The three species have persisted as small populations ever since. A strain of the endosymbiotic bacterium Wolbachia has an intermediate prevalence in the H. horticola across the main Åland population. The infection increases susceptibility of the parasitoid to hyperparasitism. We investigated the establishment and spread of the parasitoid, along with patterns of prevalence of its symbiont using 323 specimens collected between 1992 and 2013, from five localities across Åland, including the source and introduced populations. Using 14 microsatellites and one mitochondrial marker, we suggest that the relatively diverse founding population and occasional migration between islands might have facilitated the persistence of all isolated populations, despite multiple local population crashes. We also show local near-fixation of Wolbachia, where the hyperparasitoid is absent, and selection against infected wasp genotypes is relaxed.