Browsing by Subject "environmental"

Sort by: Order: Results:

Now showing items 1-1 of 1
  • Aarnio, Sonja; Soininen, Janne (2021)
    Local biodiversity has traditionally been estimated with taxonomic diversity metrics such as species richness. Recently, the concept of biodiversity has been extended beyond species identity by ecological traits determining the functional role of a species in a community. This interspecific functional diversity typically responds more strongly to local environmental variation compared with taxonomic diversity, while taxonomic diversity may mirror more strongly dispersal processes compared with functional metrics. Several trait-based indices have been developed to measure functional diversity for various organisms and habitat types, but studies of their applicability on aquatic microbial communities have been underrepresented. We examined the drivers and covariance of taxonomic and functional diversity among diatom rock pool communities on the Baltic Sea coast. We quantified three taxonomic (species richness, Shannon's diversity, and Pielou's evenness) and three functional (functional richness, evenness, and divergence) diversity indices and determined abiotic factors best explaining variation in these indices by generalized linear mixed models. The six diversity indices were highly collinear except functional evenness, which merely correlated significantly with taxonomic evenness. All diversity indices were always explained by water conductivity and temperature-sampling month interaction. Taxonomic diversity was further consistently explained by pool distance to the sea, and functional richness and divergence by pool location. The explained variance in regression models did not markedly differ between taxonomic and functional metrics. Our findings do not clearly support the superiority of neither set of diversity indices in explaining coastal microbial diversity, but rather highlight the general overlap among the indices. However, as individual metrics may be driven by different factors, the greatest advantage in assessing biodiversity is nevertheless probably achieved with a simultaneous application of the taxonomic and functional diversity metrics.