Browsing by Subject "epithelium"

Sort by: Order: Results:

Now showing items 1-4 of 4
  • Acheva, Anna; Kärki, Tytti; Schaible, Niccole; Krishnan, Ramaswamy; Tojkander, Sari (2021)
    In postmenopausal women, a major risk factor for the development of breast cancer is obesity. In particular, the adipose tissue-derived adipokine leptin has been strongly linked to tumor cell proliferation, migration, and metastasis, but the underlying mechanisms remain unclear. Here we show that treatment of normal mammary epithelial cells with leptin induces EMT-like features characterized by higher cellular migration speeds, loss of structural ordering of 3D-mammo spheres, and enhancement of epithelial traction forces. Mechanistically, leptin triggers the phosphorylation of myosin light chain kinase-2 (MLC-2) through the interdependent activity of leptin receptor and Ca2+ channels. These data provide evidence that leptin-activated leptin receptors, in co-operation with mechanosensitive Ca2+ channels, play a role in the development of breast carcinomas through the regulation of actomyosin dynamics.
  • Laulajainen-Hongisto, Anu; Toppila-Salmi, Sanna Katriina; Luukkainen, Annika; Kern, Robert (2020)
    Allergic rhinitis, chronic rhinosinusitis, and asthma are highly prevalent, multifactorial chronic airway diseases. Several environmental and genetic factors affect airway epithelial dynamics leading to activation of inflammatory mechanisms in the airways. This review links environmental factors to host epithelial immunity in airway diseases. Understanding altered homeostasis of the airway epithelium might provide important targets for diagnostics and therapy of chronic airway diseases.
  • Renkonen, Jutta; Toppila-Salmi, Sanna; Joenvaara, Sakari; Mattila, Pirkko; Parviainen, Ville; Hagstrom, Jaana; Haglund, Caj; Lehtonen, Mikko; Renkonen, Risto (2015)
    Toll-like receptors (TLRs) are important in barrier homeostasis, but their role in airborne allergies is not fully understood. The aim was to evaluate baseline and allergen-induced expression of TLR proteins in nasal epithelium during allergic rhinitis. Nineteen otherwise healthy non-smoking volunteers both allergic to birch pollen and non-allergic controls were enrolled. We took nasal biopsies before and after off-seasonal intranasal birch pollen or diluent challenge. The expression of epithelial TLR1-7, TLR9-10, and MyD88 proteins was immunohistochemically evaluated from the nasal biopsies. The TLR1-3 and TLR5-10 mRNAs were observed by RNA-microarray. Baseline epithelial expression of TLR proteins was wide and identical in controls and atopics. After off-seasonal intranasal birch pollen challenge, a negative change in the expression score of TLR1 and TLR6 proteins was detected in the atopic group. TLR mRNA expression was not affected by birch pollen challenge. Nasal epithelium seems to express all known TLRs. The mechanisms by which TLR1, and TLR6 proteins could affect pollen allergen transport need further studies.
  • Stratoulias, Vassilis; Michon, Frederic (2019)
    Recent advances in bioengineering and biomaterials, along with knowledge deriving from the fields of developmental biology and stem cell research, have rendered feasible functional replacement of full organs. Here, we describe the methodology for bioengineering a tooth, starting from embryonic epithelial and mesenchymal single cell suspensions. In addition, we describe the subsequent steps of processing this minute structure for use in applications such as histological examination, immunofluorescence and in situ hybridisation. This methodology can be used for any minute structure that needs to be used in paraffin blocks.•Detailed methodology for reproducible and reliable results•Extra step to ensure single cell populations•Subsequent minute structure processing for histological analysis