Lindholm, Jesse
(Helsingin yliopisto, 2013)
Major depressive disorder (MDD) affects millions of people every year and produces significant human suffering and economic burden to society. The symptomatology of MDD is heterogeneous and multidimensional, and only two core symptoms, depressed mood and anhedonia, are frequently shared by patients. Consequently, modeling of MDD is challenging, and only depression-related phenomena, not depressed mood itself, can be examined in animals. MDD is commonly treated with antidepressant drugs (or antidepressants, ADs). However, monoamine-based ADs act in a delayed-onset manner and often exhibit only moderate clinical efficacy. Electroconvulsive therapy (ECT) remains the treatment of choice for treatment-resistant depression (TRD) and for cases for which a rapid clinical response is required. Given the practical and ethical limitations of ECT, the development of fast-acting ADs is needed. Importantly, the NMDA receptor antagonist ketamine has been shown to produce rapid and long-lasting AD effects in TRD patients.
Changes in the levels and signaling of neurotrophin brain-derived neurotrophic factor (BDNF) have been associated with the etiology of MDD. However, studies of genetically modified mice expressing altered levels of BDNF have not provided a solid link between BDNF deficiency and depression-related behavior. By contrast, emerging evidence indicates that the effects of ADs are mediated by BDNF and its tropomyosin-related kinase B receptor, TrkB. ADs enhance BDNF-TrkB signaling and thereby facilitate neuronal plasticity in the brain. Recent evidence indicates that these changes in plasticity lead to the restoration of juvenile-type plasticity in the adult rodent cortex, which allows environment-driven reorganization of brain networks. Based on these data, the network theory of AD action was formulated. However, it is unclear if this concept can be generalized to diverse neuronal networks.
The main aims of this thesis were to investigate the importance of TrkB signaling in the anxiety- and depression-like behavioral phenotype in mice, to examine the role of BDNF-TrkB signaling in the antidepressant-like effects of glutamatergic drugs in mice, to study the network theory of ADs in a mouse fear extinction paradigm and to investigate the behavioral effects of adult fluoxetine treatment in mice exposed to fluoxetine early in life. When examining TrkB signaling-deficient mice (TrkB.T1), we observed that young and aged TrkB.T1 mice exhibited alterations in their exploration and emotional behavior and increased behavioral despair. These findings suggest that altered TrkB signaling leads to depression-like behavior, and thus, TrkB.T1 mice may be used as a genetic model of depression.
We next studied selected glutamatergic drugs in behavioral despair models and determined that, similar to their effects in humans, ketamine and the AMPA receptor potentiator LY 451646 produce an antidepressant-like effect in mice. In contrast to classical ADs, these drugs were also effective in BDNF heterozygote knock-out mice. Furthermore, neither of these drugs influenced BDNF protein or Trk-phosphorylation levels in wild-type or BDNF-deficient mice. These data suggest that the antidepressant-like effects of ketamine may be independent of BDNF-TrkB signaling.
Disturbances in the serotonergic system during early development may cause permanent behavioral effect in adult animals. In our study, early life exposure to fluoxetine, an AD that enhances serotonergic transmission, led to specific and persistent behavioral changes in adult animals. Intriguingly, adult fluoxetine treatment normalized some of these changes. We therefore examined whether fluoxetine can enable plastic changes in fear circuits in mice in conjunction with an environmental stimulus. We observed that the combination of fear exposure and fluoxetine treatment produced permanent fear extinction in the classical fear conditioning paradigm in mice. Importantly, neither fluoxetine nor extinction alone produced permanent fear erasure. This finding supports the network theory of AD action and clinical observations demonstrating the superiority of the combination of drug administration and psychotherapy for the treatment of post-traumatic stress disorder and depression.
In conclusion, these data strengthen the connection between BDNF-TrkB signaling and the antidepressant-like effects of classical ADs and support the network hypothesis of AD action. In addition, these results also suggest that there may be fast-acting AD treatments with a mechanism of action that is independent of BDNF-TrkB signaling.