Browsing by Subject "fatty acids"

Sort by: Order: Results:

Now showing items 1-14 of 14
  • Niinistö, Sari; Miettinen, Maija E.; Cuthbertson, David; Honkanen, Jarno; Hakola, Leena; Autio, Reija; Erlund, Iris; Arohonka, Petra; Vuorela, Arja; Härkönen, Taina; Hyöty, Heikki; Krischer, Jeffrey P.; Vaarala, Outi; Knip, Mikael; Virtanen, Suvi M. (2022)
    AimsAltered immune functions as well as fatty acid intake and status have been associated with the development of type 1 diabetes. We aimed to study the relationship between fatty acids and immunological markers in young children with increased genetic risk for type 1 diabetes in order to define putative mechanisms related to development of islet autoimmunity. MethodsSerum samples for fatty acid and immunological marker measurements were obtained in the Trial to Reduce IDDM in the Genetically at Risk (TRIGR) ancillary study (Divia) from children born between 2002 and 2007 in 15 countries. Case children (n = 95) were defined as having repeated positivity for at least two out of four diabetes-associated autoantibodies. For each case child, control children were selected matched for country and date of birth (n = 173). Serum fatty acids and immunological markers were measured from cord serum and at the age of 6 and 12 months. Spearman correlation coefficients were calculated between fatty acids and immunological markers. ResultsCorrelations between circulating fatty acids and immunological markers were different in case children who developed islet autoimmunity than in control children already at birth continuing across the first year of life. In case children, saturated fatty acids (SFAs) showed stronger correlations with immunological markers, while in controls, polyunsaturated fatty acids (PUFAs) showed stronger correlations. ConclusionsIn cases, SFAs were associated with several immunological markers (CXCL10, IL-6, IL-9, IL-17, and CM-CSF) previously linked to the type 1 diabetes disease process. Findings indicate that fatty acids could have immunomodulatory potential in the early phase of the disease development, although causality between fatty acids and the immunological pathways remains to be explored. Trial registry numberNCT00179777
  • Wang, Qin; Wurtz, Peter; Auro, Kirsi; Morin-Papunen, Laure; Kangas, Antti J.; Soininen, Pasi; Tiainen, Mika; Tynkkynen, Tuulia; Joensuu, Anni; Havulinna, Aki S.; Aalto, Kristiina; Salmi, Marko; Blankenberg, Stefan; Zeller, Tanja; Viikari, Jorma; Kahonen, Mika; Lehtimaki, Terho; Salomaa, Veikko; Jalkanen, Sirpa; Jarvelin, Marjo-Riitta; Perola, Markus; Raitakari, Olli T.; Lawlor, Debbie A.; Kettunen, Johannes; Ala-Korpela, Mika (2016)
    Background: Hormonal contraception is commonly used worldwide, but its systemic effects across lipoprotein subclasses, fatty acids, circulating metabolites and cytokines remain poorly understood. Methods: A comprehensive molecular profile (75 metabolic measures and 37 cytokines) was measured for up to 5841 women (age range 24-49 years) from three population-based cohorts. Women using combined oral contraceptive pills (COCPs) or progestin-only contraceptives (POCs) were compared with those who did not use hormonal contraception. Metabolomics profiles were reassessed for 869 women after 6 years to uncover the metabolic effects of starting, stopping and persistently using hormonal contraception. Results: The comprehensive molecular profiling allowed multiple new findings on the metabolic associations with the use of COCPs. They were positively associated with lipoprotein subclasses, including all high-density lipoprotein (HDL) subclasses. The associations with fatty acids and amino acids were strong and variable in direction. COCP use was negatively associated with albumin and positively associated with creatinine and inflammatory markers, including glycoprotein acetyls and several growth factors and interleukins. Our findings also confirmed previous results e.g. for increased circulating triglycerides and HDL cholesterol. Starting COCPs caused similar metabolic changes to those observed cross-sectionally: the changes were maintained in consistent users and normalized in those who stopped using. In contrast, POCs were only weakly associated with metabolic and inflammatory markers. Results were consistent across all cohorts and for different COCP preparations and different types of POC delivery. Conclusions: Use of COCPs causes widespread metabolic and inflammatory effects. However, persistent use does not appear to accumulate the effects over time and the metabolic perturbations are reversed upon discontinuation. POCs have little effect on systemic metabolism and inflammation.
  • Taipale, Sami J.; Kuoppamäki, Kirsi; Strandberg, Ursula; Peltomaa, Elina; Vuorio, Kristiina (SpringerLink, 2020)
    Hydrobiologia 847 21 (2020)
    Food quality is one of the key factors influencing zooplankton population dynamics. Eutrophication drives phytoplankton communities toward the dominance of cyanobacteria, which means a decrease in the availability of sterols and long-chain polyunsaturated fatty acids (EPA and DHA). The effects of different restoration measures on the nutritional quality of the phytoplankton community and subsequent impacts on zooplankton biomass have rarely been considered. We analyzed the nutritional quality of phytoplankton in the eutrophic Lake Vesijärvi in southern Finland over a 37-year period, and studied the impacts of two restoration measures, biomanipulation and hypolimnetic aeration, on the abundance of high-quality phytoplankton. We found that biomanipulation had a positive impact on the abundance of taxa synthesizing sterols, EPA, and DHA and, concurrently, on the biomass of the keystone species Daphnia. In contrast, hypolimnetic aeration did not result in such a beneficial outcome, manifested as a decrease in the abundance of Daphnia and frequent phytoplankton blooms dominated by cyanobacteria suggesting reduction in the nutritional quality of food for Daphnia. Our analysis shows that the determination of the nutritional value of algae and the contribution of essential fatty acids and sterols is an effective method to evaluate the success of various restoration measures.
  • Wurtz, Peter; Cook, Sarah; Wang, Qin; Tiainen, Mika; Tynkkynen, Tuulia; Kangas, Antti J.; Soininen, Pasi; Laitinen, Jaana; Viikari, Jorma; Kahonen, Mika; Lehtimaki, Terho; Perola, Markus; Blankenberg, Stefan; Zeller, Tanja; Mannisto, Satu; Salomaa, Veikko; Jarvelin, Marjo-Riitta; Raitakari, Olli T.; Ala-Korpela, Mika; Leon, David A. (2016)
    Background: High alcohol consumption is a major cause of morbidity, yet alcohol is associated with both favourable and adverse effects on cardiometabolic risk markers. We aimed to characterize the associations of usual alcohol consumption with a comprehensive systemic metabolite profile in young adults. Methods: Cross-sectional associations of alcohol intake with 86 metabolic measures were assessed for 9778 individuals from three population-based cohorts from Finland (age 24-45 years, 52% women). Metabolic changes associated with change in alcohol intake during 6-year follow-up were further examined for 1466 individuals. Alcohol intake was assessed by questionnaires. Circulating lipids, fatty acids and metabolites were quantified by high-throughput nuclear magnetic resonance metabolomics and biochemical assays. Results: Increased alcohol intake was associated with cardiometabolic risk markers across multiple metabolic pathways, including higher lipid concentrations in HDL subclasses and smaller LDL particle size, increased proportions of monounsaturated fatty acids and decreased proportion of omega-6 fatty acids, lower concentrations of glutamine and citrate (P<0.001 for 56 metabolic measures). Many metabolic biomarkers displayed U-shaped associations with alcohol consumption. Results were coherent for men and women, consistent across the three cohorts and similar if adjusting for body mass index, smoking and physical activity. The metabolic changes accompanying change in alcohol intake during follow-up resembled the cross-sectional association pattern (R-2 = 0.83, slope = 0.7260.04). Conclusions: Alcohol consumption is associated with a complex metabolic signature, including aberrations in multiple biomarkers for elevated cardiometabolic risk. The metabolic signature tracks with long-term changes in alcohol consumption. These results elucidate the double-edged effects of alcohol on cardiovascular risk.
  • Mir, Bilal Ahmad; Albrecht, Elke; Ali, Asghar; Hansson, Ola; Maak, Steffen (2022)
    Previously, microRNA-100 (miR-100) and its putative mRNA target, insulin-like growth factor receptor-1 (IGF1R) were identified as differentially and inversely expressed in bovine longissimus dorsi (LD) muscles with divergent intramuscular fat (IMF) content by our group. While IGF1R signaling is implicated in myogenesis and muscle lipid metabolism, the underlying regulatory mechanisms are poorly understood. In the present study, we aimed to investigate the regulation of IGF1R by miR-100 during bovine muscle satellite cell (BMSC) myogenesis and lipid deposition. MiR-100 was confirmed to target the IGF1R 3 '-untranslated region (3 '-UTR) by luciferase reporter assay. Furthermore, expression of miR-100 and IGF1R was reciprocal during BMSC differentiation, suggesting a crosstalk between the two. Correspondingly, miR-100 mimic (agomiR) suppressed the levels of IGF1R, PI3K/AKT pathway signaling, myogenic gene MYOG, muscle structural components MYH7 and MYH8, whereas the inhibitor (antagomiR) had no clear stimulating effects. The IGF1R inhibitor (BMS-754807) curtailed receptor levels and triggered atrophy in muscle myotubes but did not influence miR-100 expression. AgomiR increased oleic acid-induced lipid deposition in BMSC myotubes supporting its involvement in intramuscular fat deposition, while antagomiR had no effect. Moreover, mitochondrial beta-oxidation and long-chain fatty acid synthesis-related genes were modulated by agomiR addition. Our results demonstrate modulatory roles of miR-100 in BMSC development, lipid deposition, and metabolism and suggest a role of miR-100 in marbling characteristics of meat animals and fat oxidation in muscle.
  • Tervahattu, H.; Hartonen, K.; Kerminen, V.-M.; Kupiainen, K.; Aarnio, P.; Koskentalo, T.; Tuck, A. F.; Vaida, V. (American Geophysical Union, 2002)
  • Kainz, M. J.; Hager, H.H.; Rasconi, S.; Kahilainen, K. K.; Amundsen, P. -A.; Hayden, B. (2017)
    Trophic transfer and retention of dietary compounds are vital for somatic development, reproduction, and survival of aquatic consumers. In this field study, stable carbon and nitrogen isotopes, and fatty acids (FA) contents in invertebrates and fishes of pre-alpine Lake Lunz, Austria, were used to (1) identify the resource use and trophic level of Arctic charr (Salvelinus alpinus), pike (Esox lucius), perch (Perca fluviatilis), brown trout (Salmo trutta), roach (Rutilus rutilus), and minnow (Phoxinus phoxinus) and (2) examine how polyunsaturated fatty acids (PUFA; i.e., omega-3 and -6 PUFA) are related to total lipid status, littoral-pelagic reliance, and trophic position. Stable isotope data suggest that pike, perch, and minnow derived most of their energy from littoral resources, but minnows differed from pike and perch in their trophic position and PUFA composition. The co-occurrence of cyprinids, percids, and pike segregated these fishes into more lipid-rich (roach, minnow) and lipid-poor (pike, percids) species. Although the relatively lipid-poor pike and percids occupied a higher trophic position than cyprinids, there was a concurrent, total lipid-dependent decline in omega-3 and -6 PUFA in these predatory fishes. Results of this lake food-web study demonstrated that total lipids in fish community, littoral-pelagic reliance, and trophic position explained omega-3 and -6 PUFA in dorsal muscle tissues. Omega-3 and -6 PUFA in these fishes decreased with increasing trophic position, demonstrating that these essential FAs did not biomagnify with increasing trophic level. Finally, this lake food-web study provides evidence of fish community-level relationship between total lipid status and PUFA or stable isotope ratios, whereas the strength of such relationships was less strong at the species level.
  • Murphy, Rachel A.; Tintle, Nathan; Harris, William S.; Darvishian, Maryam; Marklund, Matti; Virtanen, Jyrki K.; Hantunen, Sari; de Mello, Vanessa D.; Tuomilehto, Jaakko; Lindstrom, Jaana; Bolt, Matthew A.; Brouwer, Ingeborg A.; Wood, Alexis C.; Senn, Mackenzie; Redline, Susan; Tsai, Michael Y.; Gudnason, Vilmundur; Eiriksdottir, Gudny; Lindberg, Eva; Shadyab, Aladdin H.; Liu, Buyun; Carnethon, Mercedes; Uusitupa, Matti; Djousse, Luc; Riserus, Ulf; Lind, Lars; van Dam, Rob M.; Koh, Woon-Puay; Shi, Peilin; Siscovick, David; Lemaitre, Rozenn N.; Mozaffarian, Dariush (2022)
    Background: n-3 and n-6 PUFAs have physiologic roles in sleep processes. but little is known regarding circulating n-3 and n-6 PUFA and sleep parameters. Objectives: We sought to assess associations between biomarkers of n-3 and n-6 PUFA intake with self-reported sleep duration and difficulty falling sleeping in the Fatty Acids and Outcome Research Consortium. Methods: Harmonized, de novo. individual-level analyses were performed and pooled across 12 cohorts. Participants were 35-96 y old and from 5 nations. Circulating measures included alpha-linolenic acid (ALA), EPA, docosapentaenoic acid (DPA), DHA, EPA + DPA DHA, linoleic acid, and arachidonic acid. Sleep duration (10 cohorts. n = 18.791) was categorized as short (= 9 h). Difficulty falling asleep (8 cohorts, n = 12,500) was categorized as yes or no. Associations between PUFAs, sleep duration, and difficulty falling sleeping were assessed by cross-sectional multinomial logistic regression using standardized protocols and covariates. Cohort-specific multivariable-adjusted ORs per quintile of PUFAs were pooled with inverse-variance weighted meta-analysis. Results: In pooled analysis adjusted for sociodemographic characteristics and health status, participants with higher very long-chain n-3 PUFAs were less likely to have long sleep duration. In the top compared with the bottom quintiles. the multivariable-adjusted ORs (95% CIs) for long sleep were 0.78 (95% CI: 0.65, 0.95) for DHA and 0.76 (95% CI: 0.63, 0.93) for EPA + DPA + DHA. Significant associations for ALA and n-6 PUFA with short sleep duration or difficulty falling sleeping were not identified. Conclusions: Participants with higher concentrations of very long-chain n-3 PUFAs were less likely to have long sleep duration. While objective biomarkers reduce recall bias and misclassification, the cross-sectional design limits assessment of the temporal nature of this relation. These novel findings across 12 cohorts highlight the need for experimental and biological assessments of very long-chain n-3 PUFAs and sleep duration.
  • Nwaru, Bright I.; Dierkes, Jutta; Ramel, Alfons; Arnesen, Erik Kristoffer; Thorisdottir, Birna; Lamberg-Allardt, Christel; Soderlund, Fredrik; Barebring, Linnea; Akesson, Agneta (2022)
    Objective: To identify, critically appraise, and synthesize evidence on the effect of quality of dietary fat intake and different classes of fatty acids on the risk of Alzheimer's disease (AD) and dementia in adults aged >= 50 years. Methods: We searched MEDLINE, EMBASE, Cochrane Central of Controlled Trials, and Scopus for clinical trials and prospective cohort studies published until May 2021. Two reviewers independently screened retrieved literature, extracted relevant data, and performed risk of bias assessment. Classes of fatty acids included were saturated fatty acids (SFAs), trans fatty acids (TFAs), monounsaturated fatty acids (MUFAs), poly-unsaturated fatty acids (PUFAs), and their subtypes and sources. Given between-study heterogeneity, we did not perform meta-analyses but narratively described findings from the studies. Results: From 4,491 identified records, five articles (based on four prospective cohort studies) met the inclusion criteria. Three studies had an overall serious risk of bias, while one study had a moderate risk. Overall, we found no robust association between intake of any fatty acids type and the development of AD and dementia. For example, for SFA and TFA, there was contradictory associations reported on AD: one study found that each unit increase in energy-adjusted intake of SFA (risk ratio (RR) 0.83, 95%CI 0.70 0.98) and TFA (RR 0.80, 95%CI 0.65-0.97) was associated with a decreased risk of AD, but not dementia. For PUFA, one study found that higher quintile intake of marine-based n-3 PUFA was associated with a decreased risk of AD. The intake of other fatty acids was not associated with the outcomes. The certainty of the overall evidence was inconclusive. Conclusion: We found no clear association between the intake of various classes of fatty acids and the risk of AD and dementia in adults. More well-designed prospective studies are required to clarify these findings.
  • TRIGR Investigators; Hakola, Leena; Erlund, Iris; Cuthbertson, David; Miettinen, Maija E.; Autio, Reija; Nucci, Anita M.; Härkönen, Taina; Honkanen, Jarno; Vaarala, Outi; Hyöty, Heikki; Knip, Mikael; Krischer, Jeffrey P.; Niinistö, Sari; Virtanen, Suvi M. (2021)
    Background Circulating fatty acids have been linked to development of type 1 diabetes. Objectives To study the prospective associations of serum fatty acids with the risk of islet autoimmunity in high-risk children. Methods A nested case-control selection was carried out within the TRIGR cohort, which included infants with HLA (DQB1 or DQA1)-conferred disease susceptibility and a first-degree relative with type 1 diabetes, born between 2002 and 2007 in 15 countries and followed-up until 2017. The present study included 244 case children positive for at least two islet autoantibodies (ICA, IAA, GADA, and IA-2A) and two control children were matched for country and age. Proportions of 26 serum fatty acids at cord blood and at 6, 12, and 18 months of age were assessed using gas-chromatography. Results The average proportions of the following fatty acids were associated with an increased risk of islet autoimmunity, adjusted for sex, HLA risk, and maternal type 1 diabetes: pentadecanoic acid (15:0) (OR 3.41: 95% CI 1.70, 6.85), heptadecanoic acid (iso 17:0) (2.64: 1.62, 4.28) and (anteiso 17:0) (2.27: 1.39, 3.70), stearic acid (18:0) (23.8: 2.32, 244.6), and conjugated linoleic acid (18:2n-7) (2.60: 1.47, 4.59). Breastfeeding and not having maternal type 1 diabetes were positively associated with levels of the above-mentioned fatty acids. N-3 fatty acids were not consistently associated with islet autoimmunity. Conclusions We found direct associations of pentadecanoic acid, heptadecanoic acid, stearic acid, and conjugated linoleic acid with the risk of islet autoimmunity. Further studies are needed to understand the complex role of fatty acids in the development of type 1 diabetes.
  • Taipale, Sami Johan; Kahilainen, Kimmo Kalevi; Holtgrieve, Gordon William; Peltomaa, Elina Talvikki (2018)
    The first few months of life is the most vulnerable period for fish and their optimal hatching time with zooplankton prey is favored by natural selection. Traditionally, however, prey abundance (i.e., zooplankton density) has been considered important, whereas prey nutritional composition has been largely neglected in natural settings. High-quality zooplankton, rich in both essential amino acids (EAAs) and fatty acids (FAs), are required as starting prey to initiate development and fast juvenile growth. Prey quality is dependent on environmental conditions, and, for example, eutrophication and browning are two major factors defining primary producer community structures that will directly determine the nutritional quality of the basal food sources (algae, bacteria, terrestrial matter) for zooplankton. We experimentally tested how eutrophication and browning affect the growth and survival of juvenile rainbow trout (Oncorhynchus mykiss) by changing the quality of basal resources. We fed the fish on herbivorous zooplankton (Daphnia) grown with foods of different nutritional quality (algae, bacteria, terrestrial matter), and used GC-MS, stable isotope labeling as well as bulk and compound-specific stable isotope analyses for detecting the effects of different diets on the nutritional status of fish. The content of EAAs and omega-3 (ω-3) polyunsaturated FAs (PUFAs) in basal foods and zooplankton decreased in both eutrophication and browning treatments. The decrease in ω-3 PUFA and especially docosahexaenoic acid (DHA) was reflected to fish juveniles, but they were able to compensate for low availability of EAAs in their food. Therefore, the reduced growth and survival of the juvenile fish was linked to the low availability of DHA. Fish showed very low ability to convert alpha-linolenic acid (ALA) to DHA. We conclude that eutrophication and browning decrease the availability of the originally phytoplankton-derived DHA for zooplankton and juvenile fish, suggesting bottom-up regulation of food web quality.
  • Qadri, Sami; Lallukka-Brück, Susanna; Luukkonen, Panu K.; Zhou, You; Gastaldelli, Amalia; Orho-Melander, Marju; Sammalkorpi, Henna; Juuti, Anne; Penttilä, Anne K.; Perttilä, Julia; Hakkarainen, Antti; Lehtimäki, Tiina E.; Oresic, Matej; Hyötyläinen , Tuulia; Hodson, Leanne; Olkkonen, Vesa M.; Yki-Järvinen, Hannele (2020)
    Background & Aims The I148M variant in PNPLA3 is the major genetic risk factor for non-alcoholic fatty liver disease (NAFLD). The liver is enriched with polyunsaturated triglycerides (PUFA-TGs) in PNPLA3-I148M carriers. Gene expression data indicate that PNPLA3 is liver-specific in humans, but whether it functions in adipose tissue (AT) is unknown. We investigated whether PNPLA3-I148M modifies AT metabolism in human NAFLD. Methods Profiling of the AT lipidome and fasting serum non-esterified fatty acid (NEFA) composition was conducted in 125 volunteers (PNPLA3(148MM/MI), n = 63; PNPLA3(148II), n = 62). AT fatty acid composition was determined in 50 volunteers homozygous for the variant (PNPLA3(148MM), n = 25) or lacking the variant (PNPLA3(148II), n = 25). Whole-body insulin sensitivity of lipolysis was determined using [H-2(5)]glycerol, and PNPLA3 mRNA and protein levels were measured in subcutaneous AT and liver biopsies in a subset of the volunteers. Results PUFA-TGs were significantly increased in AT in carriers versus non-carriers of PNPLA3-I148M. The variant did not alter the rate of lipolysis or the composition of fasting serum NEFAs. PNPLA3 mRNA was 33-fold higher in the liver than in AT (P <.0001). In contrast, PNPLA3 protein levels per tissue protein were three-fold higher in AT than the liver (P <.0001) and nine-fold higher when related to whole-body AT and liver tissue masses (P <.0001). Conclusions Contrary to previous assumptions, PNPLA3 is highly abundant in AT. PNPLA3-I148M locally remodels AT TGs to become polyunsaturated as it does in the liver, without affecting lipolysis or composition of serum NEFAs. Changes in AT metabolism do not contribute to NAFLD in PNPLA3-I148M carriers.
  • Abidizadegan, Maryam; Peltomaa, Elina; Blomster, Jaanika (2021)
    Microalgae produce a variety of bioactive components that provide benefits to human and animal health. Cryptophytes are one of the major groups of microalgae, with more than 20 genera comprised of 200 species. Recently, cryptophytes have attracted scientific attention because of their characteristics and biotechnological potential. For example, they are rich in a number of chemical compounds, such as fatty acids, carotenoids, phycobiliproteins and polysaccharides, which are mainly used for food, medicine, cosmetics and pharmaceuticals. This paper provides a review of studies that assess protective algal compounds and introduce cryptophytes as a remarkable source of bioactive components that may be usable in biomedical and pharmaceutical sciences.
  • Spilling, Kristian; Seppälä, Jukka; Schwenk, Dagmar; Rischer, Heiko; Tamminen, Timo (Springer, 2021)
    Journal of Applied Phycology 33: 3
    There is a growing demand for marine omega-3 fatty acids (FAs) that is produced in high amounts by some microalgae. Here we determined the FA profiles of two cold water adapted diatoms, Chaetoceros wighamii and Thalassiosira baltica. The cultures were acclimated to different temperatures (3, 7, 11, 15, and 19 °C) and irradiance (20, 40, 130, and 450 μmol photons m−2 s−1) and the FA profiles were determined in exponential and stationary growth phases, the latter induced by different nutrient limitation (N, P, and Si). The maximum growth rate was obtained by both species at 11 °C, ≥ 130 μmol photons m−2 s−1 and was 0.8 day−1 and 0.6 day−1 for C. wighamii and T. baltica, respectively. Both species contained relatively high amounts of eicosapentaenoic acid (EPA). Thalassiosira baltica accumulated maximally ~ 30 mg EPA g−1 ash-free dry weight (AFDW) under Si-limitation. The content of docosahexaenoic acid (DHA) was lower, reaching up to 4 mg DHA g−1 AFDW in T. baltica. The concentration of EPA correlated positively with the chlorophyll a:carbon ratio, suggesting that it is bound to membranes in the photosynthetic apparatus and the EPA content in T. baltica was high enough to consider it as a potent candidate for cultivation under cold (< 15 °C) conditions. Covering a wide range of environmental conditions, the strongest differentiation in FA profiles was observed between the species with the growth phase/nutrient limitation pattern as the second most important driver of the FA composition.