Browsing by Subject "fibroblast"

Sort by: Order: Results:

Now showing items 1-4 of 4
  • Beauchamp, Philippe; Jackson, Christopher B.; Ozhathil, Lijo Cherian; Agarkova, Irina; Galindo, Cristi L.; Sawyer, Douglas B.; Suter, Thomas M.; Zuppinger, Christian (2020)
    Purpose: Both cardiomyocytes and cardiac fibroblasts (CF) play essential roles in cardiac development, function, and remodeling. Properties of 3D co-cultures are incompletely understood. Hence, 3D co-culture of cardiomyocytes and CF was characterized, and selected features compared with single-type and 2D culture conditions.Methods: Human cardiomyocytes derived from induced-pluripotent stem cells (hiPSC-CMs) were obtained from Cellular Dynamics or Ncardia, and primary human cardiac fibroblasts from ScienCell. Cardiac spheroids were investigated using cryosections and whole-mount confocal microscopy, video motion analysis, scanning-, and transmission-electron microscopy (SEM, TEM), action potential recording, and quantitative PCR (qPCR).Results: Spheroids formed in hanging drops or in non-adhesive wells showed spontaneous contractions for at least 1 month with frequent media changes. SEM of mechanically opened spheroids revealed a dense inner structure and no signs of blebbing. TEM of co-culture spheroids at 1 month showed myofibrils, intercalated disc-like structures and mitochondria. Ultrastructural features were comparable to fetal human myocardium. We then assessed immunostained 2D cultures, cryosections of spheroids, and whole-mount preparations by confocal microscopy. CF in co-culture spheroids assumed a small size and shape similar to the situation in ventricular tissue. Spheroids made only of CF and cultured for 3 weeks showed no stress fibers and strongly reduced amounts of alpha smooth muscle actin compared to early spheroids and 2D cultures as shown by confocal microscopy, western blotting, and qPCR. The addition of CF to cardiac spheroids did not lead to arrhythmogenic effects as measured by sharp-electrode electrophysiology. Video motion analysis showed a faster spontaneous contraction rate in co-culture spheroids compared to pure hiPSC-CMs, but similar contraction amplitudes and kinetics. Spontaneous contraction rates were not dependent on spheroid size. Applying increasing pacing frequencies resulted in decreasing contraction amplitudes without positive staircase effect. Gene expression analysis of selected cytoskeleton and myofibrillar proteins showed more tissue-like expression patterns in co-culture spheroids than with cardiomyocytes alone or in 2D culture.Conclusion: We demonstrate that the use of 3D co-culture of hiPSC-CMs and CF is superior over 2D culture conditions for co-culture models and more closely mimicking the native state of the myocardium with relevance to drug development as well as for personalized medicine.
  • Ollila, Hely; Paajanen, Juuso; Wolff, Henrik; Ilonen, Ilkka; Sutinen, Eva; Välimäki, Katja; Östman, Arne; Anttila, Sisko; Kettunen, Eeva; Räsänen, Jari; Kallioniemi, Olli; Myllärniemi, Marjukka; Mäyränpää, Mikko I.; Pellinen, Teijo (2021)
    Malignant pleural mesothelioma (MPM) has a rich stromal component containing mesenchymal fibroblasts. However, the properties and interplay of MPM tumor cells and their surrounding stromal fibroblasts are poorly characterized. Our objective was to spatially profile known mesenchymal markers in both tumor cells and associated fibroblasts and correlate their expression with patient survival. The primary study cohort consisted of 74 MPM patients, including 16 patients who survived at least 60 months. We analyzed location-specific tissue expression of seven fibroblast markers in clinical samples using multiplexed fluorescence immunohistochemistry (mfIHC) and digital image analysis. Effect on survival was assessed using Cox regression analyses. The outcome measurement was all-cause mortality. Univariate analysis revealed that high expression of secreted protein acidic and cysteine rich (SPARC) and fibroblast activation protein in stromal cells was associated with shorter survival. Importantly, high expression of platelet-derived growth factor receptor beta (PDGFRB) in tumor cells, but not in stromal cells, was associated with shorter survival (hazard ratio [HR] = 1.02, p <0.001). A multivariable survival analysis adjusted for clinical parameters and stromal mfIHC markers revealed that tumor cell PDGFRB and stromal SPARC remained independently associated with survival (HR = 1.01, 95% confidence interval [CI] = 1.00-1.03 and HR = 1.05, 95% CI = 1.00-1.11, respectively). The prognostic effect of PDGFRB was validated with an artificial intelligence-based analysis method and further externally validated in another cohort of 117 MPM patients. In external validation, high tumor cell PDGFRB expression associated with shorter survival, especially in the epithelioid subtype. Our findings suggest PDGFRB and SPARC as potential markers for risk stratification and as targets for therapy.
  • Silfvast, Saga (Helsingfors universitet, 2016)
    Heart failure is a major public health problem and a leading cause of mortality worldwide. The most common cause of heart failure is myocardial infarction. Following a myocardial infarction, a large number of cardiomyocytes die and cardiac muscle is replaced by fibrotic scar tissue. Since the adult heart has inadequate endogenous regenerative capacity, loss of muscle tissue often causes a progressive decrease in cardiac function eventually leading to heart failure. At the moment heart transplantation is the only curative treatment for heart failure, but the low number of donor hearts is limiting the use of this treatment option. As current drugs only slow down the progression of the disease, there is a great need for new regenerative treatments. Direct cardiac reprogramming is a new approach for generating cardiomyocytes for cardiac regeneration. Unlike pluripotent stem cell-based strategies, direct reprogramming enables conversion of a terminally differentiated cell type directly into another cell type without first producing a pluripotent intermediate. Due to their abundancy and role in the repair of myocardial injury, fibroblasts represent an attractive starting cell type for direct cardiac reprogramming. Fibroblasts have been directly reprogrammed to induced cardiomyocytes (iCMs) by overexpression of key cardiac transcription factors, microRNAs (miRNA) or by modulating specific signal transduction pathways with small-molecule compounds. Despite successful reports of direct reprogramming both in vitro and in vivo, the efficiency of direct reprogramming remains, however, too low for potential clinical applications. The aim of this M.Sc. thesis work was to establish direct reprogramming of mouse embryonic fibroblasts (MEFs) to iCMs by viral overexpression of cardiac transcription factors Hand2 (H), Nkx2.5 (N) Gata4 (G), Mef2c (M) and Tbx5 (T) and a small-molecule compound screening platform for identifying small-molecule compounds that could enhance the reprogramming efficiency and potentially replace cardiac transcription factors in direct cardiac reprogramming. In accordance with previous publications MEFs were successfully directly reprogrammed to iCMs using both HGMT and HNGMT cardiac transcription factor combinations. The screening platform was tested using the TGF-β inhibitor SB431542, which has recently been reported to increase the cardiac reprogramming efficiency. In line with previous publications, the reprogramming efficiency was significantly increased by treatment with SB431542. Initial tests with other small-molecule compounds did not have a positive effect on the reprogramming efficiency. The results of this M.Sc. thesis work verify previous publications and demonstrate a method for in vitro small-molecule compound screening, which can be used to identify compounds that increase the reprogramming efficiency in direct cardiac reprogramming. However, the results shown here are only preliminary and more replicates are needed in order to confirm the current results. Nonetheless, the results of this thesis work set a foundation for finding small-molecule compounds that in the future might be used to target direct cardiac reprogramming as a regenerative therapy for myocardial infarction and heart failure.
  • Viitala, Emma Wilhelmiina (Helsingin yliopisto, 2022)
    The gastrointestinal (GI) epithelium is composed of a single layer of cells with a turnover time of only a few days. Due to its location at the barrier between GI tract contents and the underlaying mucosa, the epithelium is constantly exposed to stress such as toxic agents and a variety of pathogens and susceptible to injury. Accordingly, the homeostatic growth as well as repair of injury in epithelium must be efficient and strictly regulated. Misregulated repair of the injured epithelium can lead to pathologies such as chronic inflammation or cancer. Underlying stromal cells such as fibroblasts provide growth factors and other signaling molecules regulating the epithelial cell stemness, differentiation and repair, but the stromal regulatory pathways during regeneration are poorly understood. The aim of this study was to establish a consensus view on the heterogeneity of GI fibroblasts, as well as to map potential epithelium derived signals affecting fibroblast function in homeostatic and injury situations using literature review, in silico approaches, and murine primary intestinal fibroblast culture. Seurat and CellChat R packages were used to perform integration and interaction analyses of six previously published mouse and three human single- cell RNA-sequencing datasets of colonic epithelial and mesenchymal cells isolated in homeostatic and/or inflammatory conditions. Murine primary intestinal fibroblasts were treated with identified potential signaling factors ex vivo and 3’RNAseq was performed to identify transcriptional responses. Both mesenchymal and epithelial cell clusters were identified in the scRNAseq data. Interestingly, similar fibroblast populations could be found in the murine and human data. I identified several epithelium-derived signaling molecules potentially targeting GI fibroblasts and focused on Gas6-Axl pathway and lactate. I confirmed high and specific expression of the Gas6 receptor Axl in intestinal fibroblasts, but recombinant Gas6 failed to induce significant changes in cultured primary fibroblasts. Lactate-treated primary intestinal fibroblasts reprogrammed their transcriptome with main alterations in metabolic pathways and induction of neutrophil-attracting chemokines. In this work I suggest a consensus model for GI fibroblast subpopulations and suggest epithelium derived lactate as a powerful means to reprogram fibroblasts.