Browsing by Subject "food webs"

Sort by: Order: Results:

Now showing items 1-4 of 4
  • Kankaala, Paula; Arvola, Lauri; Hiltunen, Minna; Huotari, Jussi; Jones, Roger I.; Hannu, Nykänen; Ojala, Anne; Olin, Mikko; Peltomaa, Elina; Peura, Sari; Rask, Martti; Tulonen, Tiina; Vesala, Sami (2019)
    Recent increases in terrestrial dissolved organic carbon (DOC) concentrations in northern inland waters have many ecological consequences. We examined available data on carbon cycles and food webs of 2 boreal headwater lakes in southern Finland. Basic limnology and catchment characteristics of a pristine lake, Valkea-Kotinen (VK), were monitored over the past 25 years while the lake has undergone browning and DOC increased from similar to 11 to 13 mg L-1. Pronounced changes in the early 2000s represent a regime shift in DOC concentration and color. Lake Alinen Mustajarvi (AM) was manipulated for 2 years by additions of labile DOC (cane sugar), raising the DOC concentration from similar to 10 to 12 mg L-1, but not changing light conditions. The 2 different approaches both revealed increased concentrations and efflux of carbon dioxide (CO2) from the lakes and thus net heterotrophy and changes in the pelagic community structure following an increase in DOC concentration. Long-term monitoring of VK revealed a decline in phytoplankton primary production (PP) along with browning, which was reflected in retarded growth of young (1-2-year-old) perch. In the experimentally manipulated lake (AM), PP was not affected, and the growth of young perch was more variable. The results suggested the importance of a pathway from labile DOC via benthic invertebrates to perch. Although provided with this extra resource, the food chain based on DOC proved inefficient. Long-term monitoring and whole-lake experimentation are complementary approaches for revealing how freshwater ecosystems respond to climate and/or atmospheric deposition-induced changes, such as browning.
  • Candolin, Ulrika; Bertell, Elina; Kallio, Jarkko (2018)
    1. Alien species are altering ecosystems around the globe. To predict and manage their impacts, the underlying mechanisms need to be understood. This is challenging in ecosystems undergoing multiple disturbances as unexpected interactions can alter the impact of individual disturbances. Such interactions are likely to be common in disturbed ecosystems, but have so far received little attention. 2. We investigated whether interactions between an invading shrimp Palaemon elegans and another human-induced disturbance, the population growth of a native mesopredator, the threespine stickleback, influences a third human-induced disturbance, the increase in biomass of filamentous algae. Increases in both the native mesopredator population and algal biomass have been promoted by eutrophication and a trophic cascade triggered by declining predatory fish stocks. 3. We used mesocosm and field enclosure experiments, combined with analyses of long-term trends in the abundance of the invader and the native mesopredator, to dissect the influence of the two species on algal biomass when alone and when co-occurring. 4. The impact of the invader on algal biomass depended on the native mesopredator; shrimp on their own had no effect on algal growth, but mitigated algae accumulation when competing with the stickleback for resources. Competition caused the shrimp to shift its diet from grazers to algae, and its habitat choice from open to vegetated habitats. The native mesopredator, in contrast, increased algal biomass irrespective of the presence of the invader, by preying on grazers and inducing a trophic cascade. 5. Our results show that the presence of a native mesopredator causes an invader to alter its behaviour and thereby its ecological impact. This demonstrates that interactions between invaders and other anthropogenic disturbances can alter the ecological impact of invaders, and, notably, that the impact of invaders can be positive and stabilize disturbed ecosystems. These results stress the importance of considering interactions among disturbances when investigating the ecological impact of alien species.
  • Kankaanpaa, Tuomas; Vesterinen, Eero; Hardwick, Bess; Schmidt, Niels M.; Andersson, Tommi; Aspholm, Paul E.; Barrio, Isabel C.; Beckers, Niklas; Bety, Joel; Birkemoe, Tone; DeSiervo, Melissa; Drotos, Katherine H.; Ehrich, Dorothee; Gilg, Olivier; Gilg, Vladimir; Hein, Nils; Hoye, Toke T.; Jakobsen, Kristian M.; Jodouin, Camille; Jorna, Jesse; Kozlov, Mikhail; Kresse, Jean-Claude; Leandri-Breton, Don-Jean; Lecomte, Nicolas; Loonen, Maarten; Marr, Philipp; Monckton, Spencer K.; Olsen, Maia; Otis, Josee-Anne; Pyle, Michelle; Roos, Ruben E.; Raundrup, Katrine; Rozhkova, Daria; Sabard, Brigitte; Sokolov, Aleksandr; Sokolova, Natalia; Solecki, Anna M.; Urbanowicz, Christine; Villeneuve, Catherine; Vyguzova, Evgenya; Zverev, Vitali; Roslin, Tomas (2020)
    Climatic impacts are especially pronounced in the Arctic, which as a region is warming twice as fast as the rest of the globe. Here, we investigate how mean climatic conditions and rates of climatic change impact parasitoid insect communities in 16 localities across the Arctic. We focus on parasitoids in a widespread habitat,Dryasheathlands, and describe parasitoid community composition in terms of larval host use (i.e., parasitoid use of herbivorous Lepidoptera vs. pollinating Diptera) and functional groups differing in their closeness of host associations (koinobionts vs. idiobionts). Of the latter, we expect idiobionts-as being less fine-tuned to host development-to be generally less tolerant to cold temperatures, since they are confined to attacking hosts pupating and overwintering in relatively exposed locations. To further test our findings, we assess whether similar climatic variables are associated with host abundances in a 22 year time series from Northeast Greenland. We find sites which have experienced a temperature rise in summer while retaining cold winters to be dominated by parasitoids of Lepidoptera, with the reverse being true for the parasitoids of Diptera. The rate of summer temperature rise is further associated with higher levels of herbivory, suggesting higher availability of lepidopteran hosts and changes in ecosystem functioning. We also detect a matching signal over time, as higher summer temperatures, coupled with cold early winter soils, are related to high herbivory by lepidopteran larvae, and to declines in the abundance of dipteran pollinators. Collectively, our results suggest that in parts of the warming Arctic,Dryasis being simultaneously exposed to increased herbivory and reduced pollination. Our findings point to potential drastic and rapid consequences of climate change on multitrophic-level community structure and on ecosystem functioning and highlight the value of collaborative, systematic sampling effort.
  • Cameron, Erin K.; Sundqvist, Maja K.; Keith, Sally A.; CaraDonna, Paul J.; Mousing, Erik A.; Nilsson, Karin A.; Metcalfe, Daniel B.; Classen, Aimée T. (2019)
    Abstract Trophic interactions within food webs affect species distributions, coexistence, and provision of ecosystem services but can be strongly impacted by climatic changes. Understanding these impacts is therefore essential for managing ecosystems and sustaining human well-being. Here, we conducted a global synthesis of terrestrial, marine, and freshwater studies to identify key gaps in our knowledge of climate change impacts on food webs and determine whether the areas currently studied are those most likely to be impacted by climate change. We found research suffers from a strong geographic bias, with only 3.5% of studies occurring in the tropics. Importantly, the distribution of sites sampled under projected climate changes was biased?areas with decreases or large increases in precipitation and areas with low magnitudes of temperature change were under-represented. Our results suggest that understanding of climate change impacts on food webs could be broadened by considering more than two trophic levels, responses in addition to species abundance and biomass, impacts of a wider suite of climatic variables, and tropical ecosystems. Most importantly, to enable better forecasts of biodiversity responses to climate change, we identify critically under-represented geographic regions and climatic conditions which should be prioritized in future research.