Browsing by Subject "forest science"

Sort by: Order: Results:

Now showing items 1-3 of 3
  • Luoma, Ville; Yrttimaa, Tuomas; Kankare, Ville; Saarinen, Ninni; Pyorala, Jiri; Kukko, Antero; Kaartinen, Harri; Hyyppa, Juha; Holopainen, Markus; Vastaranta, Mikko (2021)
    Tree growth is a multidimensional process that is affected by several factors. There is a continuous demand for improved information on tree growth and the ecological traits controlling it. This study aims at providing new approaches to improve ecological understanding of tree growth by the means of terrestrial laser scanning (TLS). Changes in tree stem form and stem volume allocation were investigated during a five-year monitoring period. In total, a selection of attributes from 736 trees from 37 sample plots representing different forest structures were extracted from taper curves derived from two-date TLS point clouds. The results of this study showed the capability of point cloud-based methods in detecting changes in the stem form and volume allocation. In addition, the results showed a significant difference between different forest structures in how relative stem volume and logwood volume increased during the monitoring period. Along with contributing to providing more accurate information for monitoring purposes in general, the findings of this study showed the ability and many possibilities of point cloud-based method to characterize changes in living organisms in particular, which further promote the feasibility of using point clouds as an observation method also in ecological studies.
  • Adamczyk, Sylwia (Helsingin yliopisto, 2016)
    Cycling of carbon (C) and nutrients plays pivotal role for functioning of every ecosystem. Biogeochemical cycles of carbon and nitrogen (N) are balanced by a network of inter-actions between plants, litter and soil chemistry, microbial communities, enzyme machinery and climate conditions. This thesis focuses on the role of terpenes in C and N transformations in boreal forest soils. Terpenes are abundant plant secondary compounds. The focus was on certain mono-, di-, and triterpenes. Soil incubation experiments revealed that terpenes increased the mineralization of carbon but decreased net nitrogen mineralization and net nitrification. Additionally they increased the amounts of carbon and nitrogen in the microbial biomass through enhancement of bacterial growth; however, they inhibited fungal growth. This study suggests that terpenes can act as a C source for some microbial communities. Moreover, terpenes showed inhibitory potential against enzymes, which are involved in C, N, P, S cycling. The mechanism of inhibition seems to be based at least partially on ability of terpenes to bind enzymes. The field experiment presented the effect of logging residues and wood ash on composition of terpenes and C and N cycling in soil five years after clear-cutting a Norway spruce stand. Logging residue treatment increased the concentrations of certain terpenes in the organic layer. Both, logging residue and wood ash treatments increased net N mineralization and net nitrification. Some changes in terpene concentrations correlated with C and N cycling processes, but the relationship between terpene concentration and C and N cycling processes remained still unclear in the field conditions. In conclusion, terpenes can affect C and N transformations in boreal forest soil. It is probable that terpenes change N cycling retaining more N in organic forms and potentially decrease nitrogen losses from forest ecosystem.
  • Imangholiloo, Mohammad; Saarinen, Ninni; Holopainen, Markus; Yu, Xiaowei; Hyyppa, Juha; Vastaranta, Mikko (2020)
    Information from seedling stands in time and space is essential for sustainable forest management. To fulfil these informational needs with limited resources, remote sensing is seen as an intriguing alternative for forest inventorying. The structure and tree species composition in seedling stands have created challenges for capturing this information using sensors providing sparse point densities that do not have the ability to penetrate canopy gaps or provide spectral information. Therefore, multispectral airborne laser scanning (mALS) systems providing dense point clouds coupled with multispectral intensity data theoretically offer advantages for the characterization of seedling stands. The aim of this study was to investigate the capability of Optech Titan mALS data to characterize seedling stands in leaf-off and leaf-on conditions, as well as to retrieve the most important forest inventory attributes, such as distinguishing deciduous from coniferous trees, and estimating tree density and height. First, single-tree detection approaches were used to derive crown boundaries and tree heights from which forest structural attributes were aggregated for sample plots. To predict tree species, a random forests classifier was trained using features from two single-channel intensities (SCIs) with wavelengths of 1550 (SCI-Ch1) and 1064 nm (SCI-Ch2), and multichannel intensity (MCI) data composed of three mALS channels. The most important and uncorrelated features were analyzed and selected from 208 features. The highest overall accuracies in classification of Norway spruce, birch, and nontree class in leaf-off and leaf-on conditions obtained using SCI-Ch1 and SCI-Ch2 were 87.36% and 69.47%, respectively. The use of MCI data improved classification by up to 96.55% and 92.54% in leaf-off and leaf-on conditions, respectively. Overall, leaf-off data were favorable for distinguishing deciduous from coniferous trees and tree density estimation with a relative root mean square error (RMSE) of 37.9%, whereas leaf-on data provided more accurate height estimations, with a relative RMSE of 10.76%. Determining the canopy threshold for separating ground returns from vegetation returns was found to be critical, as mapped trees might have a height below one meter. The results showed that mALS data provided benefits for characterizing seedling stands compared to single-channel ALS systems.