Browsing by Subject "forests"

Sort by: Order: Results:

Now showing items 1-20 of 96
  • Peng, Shikui (Suomen metsätieteellinen seura, 1986)
  • Mäkelä, A.; Hari, P.; Kellomäki, Seppo (Suomen metsätieteellinen seura, 1981)
  • Manninen, Terhikki; Roujean, Jean‐Louis; Hautecoeur, Olivier; Riihelä, Aku; Lahtinen, Panu; Jääskeläinen, Emmihenna; Siljamo, Niilo; Anttila, Kati; Sukuvaara, Timo; Korhonen, Lauri (John Wiley & Sons, 2022)
    Journal of geophysical research : atmospheres
    Abstract Helicopter based simultaneous measurements of broadband surface albedo and the effective leaf area index (LAIeff) were carried out in subarctic area of Finnish Lapland in spring 2008, 2009, and 2010 under varying illumination and snow cover conditions. Vertical profile measurements show that the found relationship between albedo and LAIeff seems to be rather independent of the flight altitude and therefore the footprint scale. Actually, flights above 500 m in altitude revealed low variations of the surface albedo approaching an aerial average at 1 km, meaning that a footprint of 20 km is representative of the landscape. The albedo of the area was beta distributed, and without LAIeff values below 0.25, the average albedo value of the area would decrease from 0.49 to 0.44 showing the albedo sensitivity to sparse vegetation. The results agreed with the photon recollision probability based model PARAS and the MODIS satellite albedo product MCD43A3. However, differences between satellite based and airborne albedo values were noticed, which could be explained by a difference in footprint size and/or the strong local heterogeneity as certain flights were operated on specific targets. Key Points • Surface albedo and effective leaf area index (LAI) can be measured at fine resolution and landscape scale simultaneously using helicopter • Surface albedo and effective LAI are coherently retrieved based on a photon recollision probability based model • Airborne and satellite-based surface albedo show a good agreement Plain Language Summary Helicopter based measurements were used to assess how much a forest stand laying over a snow slab reduces the surface albedo at high latitudes where the sun zenith angle is large and shadow cast is always important. The effect is amplified in the case of sparse vegetation as there is less mutual shadowing. Model results and satellite observations are found in good agreement with the airborne data sets.
  • Kuusipalo, Jussi (Suomen metsätieteellinen seura, 1985)
    The vegetation and some physical and chemical soil properties were studied in 410 sample plots in a random sample of stands by two-way indicator species analysis, discriminant analysis and analysis of variance. Understorey vegetation was dependent on site fertility and on the tree stand (especially species composition). Although the forest vegetation was distributed in a rather continuous way along a soil fertility gradient, relatively unambiguous site classification was possible based on the appearance of indicator species and species groups.
  • Makkonen, Olli (Suomen metsätieteellinen seura, 1967)
  • Myllyviita, Tanja; Sironen, Susanna; Saikku, Laura; Holma, Anne; Leskinen, Pekka; Palme, Ulrika (2019)
    Journal of Cleaner Production 236: 117641
    Impacts of bioeconomy on climate have been much discussed, but less attention has been given to biodiversity deterioration. One approach to assess biodiversity impacts is Life Cycle Assessment (LCA). Finland is a forested country with intensive forest industries, but only coarse biodiversity LCA methods are available. The aim of this study was to further develop and apply approaches to assess the biodiversity impacts of wood use in Finland. With the species richness approach (all taxons included), biodiversity impacts were higher in Southern than in Northern Finland but impacts in Southern and Northern Finland were lower when mammals, birds and molluscs were included. With the ecosystem indicators approach, if the reference situation were forest in its natural state, biodiversity impacts were higher than in the case where the initial state of forest before final felling was used to derive biodiversity loss. In both cases, the biodiversity impacts were higher in Northern Finland. These results were not coherent as the model applying species richness data assesses biodiversity loss based on all species, whereas the ecosystem indicators approach considers vulnerable species. One limitation of the species richness approach was that there were no reliable datasets available. In the ecosystem indicators approach, it was noticed that the biodiversity of managed Finnish forests is substantially lower than in natural forests. Biodiversity LCA approaches are highly sensitive to reference states, applied model and data. It is essential to develop approaches capable of comparing biodiversity impacts of forest management practices, or when looking at multiple environmental impacts simultaneously with the LCA framework.
  • Kuusela, S.; Ahlroth, P.; Keränen, I.; Mikkonen, N.; Punttila, P.; Romppanen, S.; Soimakallio, S.; Syrjänen, K. (SYKE, 2022)
  • Lindholm, Tapio; Jakovlev, Jevgeni; Kravchenko, Alexey (Finnish Environment Institute, 2015)
    Reports of the Finnish Environment Institute 40/2014
    Zaonezhye Peninsula (Zaonezhsky Peninsula; Заонежский полуостров in Russian transcription) is situated on the northwestern coast of Lake Onega in the Republic of Karelia, Russia. The territory of Zaonezhye is unique in that it contains nearly every type of terrain and unconsolidated sediment known in the vast expanses of northwest Russia. It is also eastern part of Fennoscandian shield. It is characterized by a high diversity of basic limestone and carbonate rocks that determine the fertility of local soils as well as the unique diversity of habitats, flora and fauna. Numerous rare calciphile plant and lichen species are found here, as well as rich, eutrophic wetlands. Long-term farming and animal husbandry have led to a large number of grassland communities in the area. As a result, a mosaic structure of diverse habitats has evolved here. Europe’s second largest lake, Lake Onega, with its clear and deep waters also affect the local climate, making it milder. This report provides for the first time detailed species lists of vascular plants, bryophytes, lichens, wood-growing fungi and insects covering the entire Zaonezhye Peninsula, Kizhi archipelago and other adjacent islands. The most important sites for protection were observed, and six new nature monuments in the southern and southerneast parts of Zaonezhye Peninsula are recommended to be established. This publication contents following articles characterizing nature of Zaonezhye area: 1. Geology and physical geography: 1.1.Geological description, 1.2. Geomorphology and Quaternary deposits, 1.3. Hydrological characteristics, 1.4. Soil cover, 1.5. Palaeogeography, 1.6. Existing and planned protected areas; 2. Landscapes and ecosystems: 2.1. Modern landscapes of Zaonezhye, 2.2. Landscape structure, 2.3. Structure of the forest covered land and forest stands, 2.4. Forest structures, 2.5. Mires, 2.6. Meadows; 3. Flora and fauna: 3.1. Vascular plants, 3.2. Bryophyte flora, 3.3 Species list of lichens and allied fungi, 3.4. Red listed and indicator lichens, 3.5. Aphyllophoroid fungi and 3.6. Insect fauna. 3.7. Localities in Zaonezhye area used in species lists of vascular plants, bryophytes, lichens, fungi and insects, and their toponyms.
  • Rajakallio, Maria; Jyväsjärvi, Jussi; Muotka, Timo; Aroviita, Jukka (Blackwell, 2021)
    Journal of Applied Ecology 58: 7, 1523-1532
    1. Growing bioeconomy is increasing the pressure to clear-cut drained peatland forests. Yet, the cumulative effects of peatland drainage and clear-cutting on the biodiversity of recipient freshwater ecosystems are largely unknown. 2. We studied the isolated and combined effects of peatland drainage and clear-cutting on stream macroinvertebrate communities. We further explored whether the impact of these forestry-driven catchment alterations to benthic invertebrates is related to stream size. We quantified the impact on invertebrate biodiversity by comparing communities in forestry-impacted streams to expected communities modelled with a multi-taxon niche model. 3. The impact of clear-cutting of drained peatland forests exceeded the sum of the independent effects of drainage and clear-cutting, indicating a synergistic interaction between the two disturbances in small streams. Peatland drainage reduced benthic biodiversity in both small and large streams, whereas clear-cutting did the same only in small streams. Small headwater streams were more sensitive to forestry impacts than the larger downstream sites. 4. We found 11 taxa (out of 25 modelled) to respond to forestry disturbances. These taxa were mainly different from those previously reported as sensitive to forestry-driven alterations, indicating the context dependence of taxonomic responses to forestry. In contrast, most of the functional traits previously identified as responsive to agricultural sedimentation also responded to forestry pressures. In particular, taxa that live temporarily in hyporheic habitats, move by crawling, disperse actively in water, live longer than 1 year, use eggs as resistance form and obtain their food by scraping became less abundant than expected, particularly in streams impacted by both drainage and clear-cutting. 5. Synthesis and applications. Drained peatland forests in boreal areas are reaching maturity and will soon be harvested. Clear-cutting of these forests incurs multiple environmental hazards but previous studies have focused on terrestrial ecosystems. Our results show that the combined impacts of peatland drainage and clear-cutting may extend across ecosystem boundaries and cause significant biodiversity loss in recipient freshwater ecosystems. This information supports a paradigm shift in boreal forest management, whereby continuous-cover forestry based on partial harvest may provide the most sustainable approach to peatland forestry.
  • Lindholm, Tapio; Nummelin, Matti (Suomen metsätieteellinen seura, 1983)
  • Cano Bernal, José Enrique; Rankinen, Katri; Thielking, Sophia (Academic Press., 2022)
    Journal of Environmental Management
    The majority of the carbon worldwide is in soil. In a river catchment, the tight relationship between soil, water and climate makes carbon likely to be eroded and transported from the soil to the rivers. There are multiple variables which can trigger and accelerate the process. In order to assess the importance of the factors involved, and their interactions resulting in the changes in the carbon cycle within catchments, we have studied the catchments of 26 Finnish rivers from 2000 to 2019. These catchments are distributed all over Finland, but we have grouped them into three categories: southern, peatland and northern. We have run a boosted regression tree (BRT) analysis on chemical, physical, climatic and anthropogenic factors to determine their influence on the variations of total organic carbon (TOC) concentration. TOC concentration has decreased in Finland between 2000 and 2019 by 0.91 mg/l, driven principally by forest ditching and % old forest in the catchment. Old forest is especially dominant in the northern catchments with an influence on TOC of 40.5%. In southern and peatland catchments, average precipitation is an important factor to explain the changes in TOC whilst in northern catchments, organic fields have more influence.
  • Kuglerová, Lenka; Jyväsjärvi, Jussi; Ruffing, Claire; Muotka, Timo; Jonsson, Anna; Andersson, Elisabet; Richardson, John S. (American Geophysical Union, 2020)
    Water Resources Research 56 9 (2020)
    Forested riparian buffers are recommended to mitigate negative effects of forest harvesting on recipient freshwater ecosystems. Most of the current best practices of riparian buffer retention aim at larger streams. Riparian protection along small streams is thought to be lacking; however, it is not well documented. We surveyed 286 small streams flowing through recent clearcuts in three timber-producing jurisdictions—British Columbia, Canada (BC), Finland, and Sweden. The three jurisdictions differed in riparian buffer implementation. In BC, forested buffers are not required on the smallest streams, and 45% of the sites in BC had no buffer. The average (±SE) width of voluntarily retained buffers was 15.9 m (±2.1) on each side of the stream. An operation-free zone is mandatory around the smallest streams in BC, and 90% of the sites fulfilled these criteria. Finland and Sweden had buffers allocated to most of the surveyed streams, with average buffer width of 15.3 m (±1.4) in Finland and 4 m (±0.4) in Sweden. Most of the streams in the two Nordic countries had additional forestry-associated impairments such as machine tracks, or soil preparation within the riparian zone. Riparian buffer width somewhat increased with stream size and slope of the riparian area, however, not in all investigated regions. We concluded that the majority of the streams surveyed in this study are insufficiently protected. We suggest that a monitoring of forestry practices and revising present forestry guidelines is needed in order to increase the protection of our smallest water courses.
  • Kellomäki, Seppo (Suomen metsätieteellinen seura, 1977)
  • Forsius, Martin; Kujala, Heini; Minunno, Francesco; Holmberg, Maria; Leikola, Niko; Mikkonen, Ninni; Autio, Iida; Paunu, Ville-Veikko; Tanhuanpää, Topi; Hurskainen, Pekka; Mäyrä, Janne; Kivinen, Sonja; Keski-Saari, Sarita; Kosenius, Anna-Kaisa; Kuusela, Saija; Virkkala, Raimo; Viinikka, Arto; Vihervaara, Petteri; Akujarvi, Anu; Bäck, Jaana; Karvosenoja, Niko; Kumpula, Timo; Kuzmin, Anton; Mäkelä, Annikki; Moilanen, Atte; Ollikainen, Markku; Pekkonen, Minna; Peltoniemi, Mikko; Poikolainen, Laura; Rankinen, Katri; Rasilo, Terhi; Tuominen, Sakari; Valkama, Jari; Vanhala, Pekka; Heikkinen, Risto K (2021)
    The challenges posed by climate change and biodiversity loss are deeply interconnected. Successful co-managing of these tangled drivers requires innovative methods that can prioritize and target management actions against multiple criteria, while also enabling cost-effective land use planning and impact scenario assessment. This paper synthesises the development and application of an integrated multidisciplinary modelling and evaluation framework for carbon and biodiversity in forest systems. By analysing and spatio-temporally modelling carbon processes and biodiversity elements, we determine an optimal solution for their co-management in the study landscape. We also describe how advanced Earth Observation measurements can be used to enhance mapping and monitoring of biodiversity and ecosystem processes. The scenarios used for the dynamic models were based on official Finnish policy goals for forest management and climate change mitigation. The development and testing of the system were executed in a large region in southern Finland (Kokemäenjoki basin, 27,024 km2) containing highly instrumented LTER (Long-Term Ecosystem Research) stations; these LTER data sources were complemented by fieldwork, remote sensing and national data bases. In the study area, estimated total net emissions were currently 4.2 TgCO2eq a−1, but modelling of forestry measures and anthropogenic emission reductions demonstrated that it would be possible to achieve the stated policy goal of carbon neutrality by low forest harvest intensity. We show how this policy-relevant information can be further utilized for optimal allocation of set-aside forest areas for nature conservation, which would significantly contribute to preserving both biodiversity and carbon values in the region. Biodiversity gain in the area could be increased without a loss of carbon-related benefits.
  • Virkkala, Raimo; Leikola, Niko; Kujala, Heini; Kivinen, Sonja; Hurskainen, Pekka; Kuusela, Saija; Valkama, Jari; Heikkinen, Risto K. (Wiley, 2022)
    Ecological Applications
    The use of indicator species in forest conservation and management planning can facilitate enhanced preservation of biodiversity from the negative effects of forestry and other uses of land. However, this requires detailed and spatially comprehensive knowledge of the habitat preferences and distributions of selected focal indicator species. Unfortunately, due to limited resources for field surveys, only a small proportion of the occurrences of focal species is usually known. This shortcoming can be circumvented by using modeling techniques to predict the spatial distribution of suitable sites for the target species. Airborne laser scanning (ALS) and other remote sensing (RS) techniques have the potential to provide useful environmental data covering systematically large areas for these purposes. Here, we focused on six bird of prey and woodpecker species known to be good indicators of boreal forest biodiversity values. We used known nest sites of the six indicator species based on nestling ringing records. Thus, the most suitable nesting sites of these species provide important information for biodiversity-friendly forest management and conservation planning. We developed fine-grained, that is, 96 × 96 m grid cell resolution, predictive maps across the whole of Finland of the suitable nesting habitats based on ALS and other RS data and spatial information on the distribution of important forest stands for the six studied biodiversity indicator bird species based on nesting-habitat suitability modeling, that is, the MaxEnt model. Habitat preferences of the study species, as determined by MaxEnt, were in line with the previous knowledge of species-habitat relations. The proportion of suitable habitats of these species in protected areas (PAs) was considerable, but our analysis also revealed many potentially high-quality forest stands outside PAs. However, many of these sites are increasingly threatened by logging because of increased pressures for using forests for bioeconomy and forest industry based on National Forest Strategy. Predicting habitat suitability based on information on the nest sites of indicator species provides a new tool for systematic conservation planning over large areas in boreal forests in Europe, and a corresponding approach would also be feasible and recommendable elsewhere where similar data are available.
  • Saarilahti, Martti (Suomen metsätieteellinen seura, 1988)
  • Bhattacharjee, Joy; Marttila, Hannu; Haghighi, Ali Torabi; Saarimaa, Miia; Tolvanen, Anne; Lepistö, Ahti; Futter, Martyn N.; Kløve, Bjørn (American Society of Civil Engineers, 2021)
    Journal of Irrigation and Drainage Engineering, 147(4), 04021006
    Spatiotemporal information on historical peatland drainage is needed to relate past land use to observed changes in catchment hydrology. Comprehensive knowledge of historical development of peatland management is largely unknown at the catchment scale. Aerial photos and light detection and ranging (LIDAR) data enlarge the possibilities for identifying past peatland drainage patterns. Here, our objectives are (1) to develop techniques for semiautomatically mapping the location of ditch networks in peat-dominated catchments using aerial photos and LIDAR data, and (2) to generate time series of drainage networks. Our approaches provide open-access techniques to systematically map ditches in peat-dominated catchments through time. We focused on the algorithm in such a way that we can identify the ditch networks from raw aerial images and LIDAR data based on the modification of multiple filters and number of threshold values. Such data are needed to relate spatiotemporal drainage patterns to observed changes in many northern rivers. We demonstrate our approach using data from the Simojoki River catchment (3,160  km2) in northern Finland. The catchment is dominated by forests and peatlands that were almost all drained after 1960. For two representative locations in cultivated peatland (downstream) and peatland forest (upstream) areas of the catchment; we found total ditch length density (km/km2), estimated from aerial images and LIDAR data based on our proposed algorithm, to have varied from 2% to 50% compared with the monitored ditch length available from the National Land survey of Finland (NLSF) in 2018. A different pattern of source variation in ditch network density was observed for whole-catchment estimates and for the available drained-peatland database from Natural Resources Institute Finland (LUKE). Despite such differences, no significant differences were found using the nonparametric Mann-Whitney U test with a 0.05 significance level based on the samples of pixel-identified ditches between (1) aerial images and NLSF vector files and (2) LIDAR data and NLSF vector files.
  • Seppälä, Kustaa (Suomen metsätieteellinen seura, 1972)