Browsing by Subject "free energy"

Sort by: Order: Results:

Now showing items 1-6 of 6
  • Annila, Arto; Salthe, Stanley (2010)
  • Annila, Arto (2016)
    Rotation of galaxies is examined by the general principle of least action. This law of nature describes a system in its surroundings, here specifically a galaxy in the surrounding Universe. According to this holistic theory the gravitational potential due to all matter in the expanding Universe relates to the universal curvature which, in turn, manifests itself as the universal acceleration. Then the orbital velocities from the central bulge to distant perimeters are understood to balance both the galactic and universal acceleration. Since the galactic acceleration decreases with distance from the galaxy's center to its luminous edge, the orbital velocities of ever more distant stars and gas clouds tend toward a value that tallies the universal acceleration. This tiny term has been acknowledged earlier by including it as a parameter in the modified gravitational law, but here the tiny acceleration is understood to result from the gravitational potential that spans across the expanding Universe. This resolution of the galaxy rotation problem is compared with observations and contrasted with models of dark matter. Also, other astronomical observations that have been interpreted as evidence for dark matter are discussed in light of the least-action principle.
  • Annila, Arto (2021)
    Evolution is customarily perceived as a biological process. However, when formulated in terms of physics, evolution is understood to entail everything. Based on the axiom of everything comprising quanta of actions (e.g., quanta of light), statistical physics describes any system evolving toward thermodynamic balance with its surroundings systems. Fluxes of quanta naturally select those processes leveling out differences in energy as soon as possible. This least-time maxim results in ubiquitous patterns (i.e., power laws, approximating sigmoidal cumulative curves of skewed distributions, oscillations, and even the regularity of chaos). While the equation of evolution can be written exactly, it cannot be solved exactly. Variables are inseparable since motions consume driving forces that affect motions (and so on). Thus, evolution is inherently a non-deterministic process. Yet, the future is not all arbitrary but teleological, the final cause being the least-time free energy consumption itself. Eventually, trajectories are computable when the system has evolved into a state of balance where free energy is used up altogether.
  • Annila, Arto; Keto, Jaana (2012)
    The on-going whole genome sequencing and whole cell assays of metabolites and proteins imply that complex systems could ultimately be mastered by perfecting knowledge into great detail. However, courses of nature are inherently intractable because flows of energy and their driving forces depend on each other. Thus no data will suffice to predict precisely the outcomes of e.g., engineering experiments. All path-dependent processes, most notably evolution in its entirety, display this capricious character of nature.
  • Annila, Arto (2022)
    Decision-making is described as a natural process, one among others, consuming free energy in the least time. The thermodynamic tenet explains why data associated with decisions display the same patterns as any other data: skewed distributions, sigmoidal cumulative curves, oscillations, and even chaos. Moreover, it is shown that decision-making is intrinsically an intractable process because everything depends on everything else. However, no decision is arbitrary but bounded by free energy, such as resources and propellants, and restricted by mechanisms like molecular, neural, and social networks. The least-time maximation of entropy, equivalent to the minimization of free energy, parallels the optimization of subjective expected utility. As the system attains a state of balance, all driving forces vanish. Then there is no need or use to make further decisions. In general, the thermodynamic theory regards those decisions well-motivated that take into account forces, i.e., causes comprehensively in projecting motions, i.e., consequences.
  • Annila, Arto (2021)
    About a century ago, in the spirit of ancient atomism, the quantum of light was renamed the photon to suggest that it is the fundamental element of everything. Since the photon carries energy in its period of time, a flux of photons inexorably embodies a flow of time. Thus, time comprises periods as a trek comprises legs. The flows of quanta naturally select optimal paths (i.e., geodesics) to level out energy differences in the least amount of time. The corresponding flow equations can be written, but they cannot be solved. Since the flows affect their driving forces, affecting the flows, and so on, the forces (i.e., causes) and changes in motions (i.e., consequences) are inseparable. Thus, the future remains unpredictable. However, it is not all arbitrary but rather bounded by free energy. Eventually, when the system has attained a stationary state where forces tally, there are no causes and no consequences. Since there are no energy differences between the system and its surroundings, the quanta only orbit on and on. Thus, time does not move forward either but circulates.