Browsing by Subject "galaxies: ISM"

Sort by: Order: Results:

Now showing items 1-9 of 9
  • de Blok, W. J. G.; Walter, Fabian; Ferguson, Annette M. N.; Bernard, Edouard J.; van der Hulst, J. M.; Neeleman, Marcel; Leroy, Adam K.; Ott, Jürgen; Zschaechner, Laura K.; Zwaan, Martin A.; Yun, Min S.; Langston, Glen; Keating, Katie M. (2018)
    We present a 3 degrees x 3 degrees, 105-pointing, high-resolution neutral hydrogen (H I) mosaic of the M81 galaxy triplet, (including the main galaxies M81, M82, and NGC 3077, as well as dwarf galaxy NGC 2976) obtained with the Very Large Array C and D arrays. This H I synthesis mosaic uniformly covers the entire area and velocity range of the triplet. The observations have a resolution of similar to 20 '' or similar to 420 pc. The data reveal many small-scale anomalous velocity features highlighting the complexity of the interacting M81 triplet. We compare our data with Green Bank Telescope observations of the same area. This comparison provides evidence for the presence of a substantial reservoir of low-column density gas in the northern part of the triplet, probably associated with M82. Such a reservoir is not found in the southern part. We report a number of newly discovered kpc-sized low-mass H I clouds with H I masses of a few times 10(6) M-circle dot. A detailed analysis of their velocity widths show that their dynamical masses are much larger than their baryonic masses, which could indicate the presence of dark matter if the clouds are rotationally supported. However, due to their spatial and kinematical association with H I tidal features, it is more likely that the velocity widths indicate tidal effects or streaming motions. We do not find any clouds that are not associated with tidal features down to an H I mass limit of a few times 10(4) M-circle dot. We compare the H I column densities with resolved stellar density maps and find a star formation threshold around 3-6 x 10(20) cm(-2). We investigate the widths of the H I velocity profiles in the triplet and find that extreme velocity dispersions can be explained by a superposition of multiple components along the line of sight near M81 as well as winds or outflows around M82. The velocity dispersions found are high enough that these processes could explain the linewidths of damped-Ly alpha absorbers observed at high redshift.
  • Haikala, L. K.; Salinas, R.; Richtler, T.; Gomez, M.; Gahm, G. F.; Mattila, K. (2021)
    Context. An intriguing silhouette of a small dust patch can be seen against the disk of the S0 galaxy NGC 3269 in the Antlia cluster in optical images. The images do not provide any clue as to whether the patch is a local Jupiter mass-scale cloudlet or a large extragalactic dust complex.Aims. We aim to resolve the nature of this object: is it a small Galactic cloudlet or an extragalactic dust complex?Methods. ALMA and APEX spectroscopy and Gemini GMOS long-slit spectroscopy were used to measure the velocity of the patch and the NGC 3269 disk radial velocity curve.Results. A weak 16 2.5 km s(-1) wide (CO)-C-12(2-1) T-MB 19 +/- 2.5. mK line in a 2 .('') . '' 2 by 2 .('') .'' 12 beam associated with the object was detected with ALMA. The observed heliocentric velocity, V-r,V- hel=3878 +/- 5.0 km s(-1), immediately establishes the extragalactic nature of the object. The patch velocity is consistent with the velocity of the nucleus of NGC 3269, but not with the radial velocity of the NGC 3269 disk of the galaxy at its position. The similar to 4 '' angular size of the patch corresponds to a linear size of similar to 1 kpc at the galaxy's Hubble distance of 50.7 Mpc. The mass estimated from the (CO)-C-12(2-1) emission is similar to 1.4x10(6)(d/50.7 Mpc)M-2(circle dot), while the attenuation derived from the optical spectrum implies a dust mass of similar to 2.6x10(4)(d/50.7 Mpc)M-2(circle dot). The derived attenuation ratio A ' (B)/(A ' (B)-A ' (R)) of 1.6 +/- 0.11 is substantially lower than the corresponding value for the mean Milky Way extinction curve for point sources (2.3).Conclusions. We established the extragalactic nature of the patch, but its origin remains elusive. One possibility is that the dust patch is left over from the removal of interstellar matter in NGC 3269 through the interaction with its neighbour, NGC 3268.
  • Davis, Timothy A.; van de Voort, Freeke; Rowlands, Kate; McAlpine, Stuart; Wild, Vivienne; Crain, Robert A. (2019)
    Post-starburst galaxies arc typically considered to be a transition population, en route to the red sequence after a recent quenching event. Despite this, recent observations have shown that these objects typically have large reservoirs of cold molecular gas. In this paper we study the star-forming gas properties of a large sample of post-starburst galaxies selected from the cosmological, hydrodynamical EAGLE simulations. These objects resemble observed high-mass post-starburst galaxies both spectroscopically and in terms of their space density, stellar mass distribution, and sizes. We find that the vast majority of simulated post-starburst galaxies have significant gas reservoirs, with star-forming gas masses approximate to 10(9) M-circle dot, in good agreement with those seen in observational samples. The simulation reproduces the observed time evolution of the gas fraction of the post-starburst galaxy population, with the average galaxy losing approximate to 90 per cent of its star-forming interstellar medium in only approximate to 600 Myr. A variety of gas consumption/loss processes are responsible for this rapid evolution, including mergers and environmental effects, while active galactic nuclei play only a secondary role. The fast evolution in the gas fraction of post-starburst galaxies is accompanied by a clear decrease in the efficiency of star formation due to a decrease in the dense gas fraction. We predict that forthcoming ALMA observations of the gas reservoirs of low-redshift post-starburst galaxies will show that the molecular gas is typically compact and has disturbed kinematics, reflecting the disruptive nature of many of the evolutionary pathways that build up the post-starburst galaxy population.
  • Leroy, Adam K.; Bolatto, Alberto D.; Ostriker, Eve C.; Walter, Fabian; Gorski, Mark; Ginsburg, Adam; Krieger, Nico; Levy, Rebecca C.; Meier, David S.; Mills, Elisabeth; Ott, Juergen; Rosolowsky, Erik; Thompson, Todd A.; Veilleux, Sylvain; Zschaechner, Laura K. (2018)
    NGC 253 hosts the nearest nuclear starburst. Previous observations show a region rich in molecular gas, with dense clouds associated with recent star formation. We used the Atacama Large Submillimeter/Millimeter Array (ALMA) to image the 350 GHz dust continuum and molecular line emission from this region at 2 pc resolution. Our observations reveal similar to 14 bright, compact (similar to 2-3 pc FWHM) knots of dust emission. Most of these sources are likely to be forming super star clusters (SSCs) based on their inferred dynamical and gas masses, association with 36 GHz radio continuum emission, and coincidence with line emission tracing dense, excited gas. One source coincides with a known SSC, but the rest remain invisible in Hubble near-infrared (IR) imaging. Our observations imply that gas still constitutes a large fraction of the overall mass in these sources. Their high brightness temperature at 350 GHz also implies a large optical depth near the peak of the IR spectral energy distribution. As a result, these sources may have large IR photospheres, and the IR radiation force likely exceeds L/c. Still, their moderate observed velocity dispersions suggest that feedback from radiation, winds, and supernovae are not yet disrupting most sources. This mode of star formation appears to produce a large fraction of stars in the burst. We argue for a scenario in which this phase lasts similar to 1 Myr, after which the clusters shed their natal cocoons but continue to produce ionizing photons. The strong feedback that drives the observed cold gas and X-ray outflows likely occurs after the clusters emerge from this early phase.
  • Ade, P. A. R.; Juvela, M.; Keihänen, E.; Kurki-Suonio, H.; Lähteenmäki, A.; Suur-Uski, A. -S.; Valiviita, J.; Planck Collaboration (2015)
    The Andromeda galaxy (M 31) is one of a few galaxies that has sufficient angular size on the sky to be resolved by the Planck satellite. Planck has detected M 31 in all of its frequency bands, and has mapped out the dust emission with the High Frequency Instrument, clearly resolving multiple spiral arms and sub-features. We examine the morphology of this long-wavelength dust emission as seen by Planck, including a study of its outermost spiral arms, and investigate the dust heating mechanism across M 31. We find that dust dominating the longer wavelength emission (greater than or similar to 0.3 mm) is heated by the diffuse stellar population (as traced by 3.6 mu m emission), with the dust dominating the shorter wavelength emission heated by a mix of the old stellar population and star-forming regions (as traced by 24 mu m emission). We also fit spectral energy distributions for individual 5' pixels and quantify the dust properties across the galaxy, taking into account these different heating mechanisms, finding that there is a linear decrease in temperature with galactocentric distance for dust heated by the old stellar population, as would be expected, with temperatures ranging from around 22 K in the nucleus to 14 K outside of the 10 kpc ring. Finally, we measure the integrated spectrum of the whole galaxy, which we find to be well-fitted with a global dust temperature of (18.2 +/- 1.0) K with a spectral index of 1.62 +/- 0.11 (assuming a single modified blackbody), and a significant amount of free-free emission at intermediate frequencies of 20-60 GHz, which corresponds to a star formation rate of around 0.12 M-circle dot yr(-1). We find a 2.3 sigma detection of the presence of spinning dust emission, with a 30 GHz amplitude of 0.7 +/- 0.3 Jy, which is in line with expectations from our Galaxy.
  • Liu, Tie; Kim, Kee-Tae; Yoo, Hyunju; Liu, Sheng-Yuan; Tatematsu, Ken'ichi; Qin, Sheng-Li; Zhang, Qizhou; Wu, Yuefang; Wang, Ke; Goldsmith, Paul F.; Juvela, Mika; Lee, Jeong-Eun; Toth, L. Viktor; Mardones, Diego; Garay, Guido; Bronfman, Leonardo; Cunningham, Maria R.; Li, Di; Lo, Nadia; Ristorcelli, Isabelle; Schnee, Scott (2016)
    We observed 146 Galactic clumps in HCN (4-3) and CS (7-6) with the Atacama Submillimeter Telescope Experiment 10 m telescope. A tight linear relationship between star formation rate and gas mass traced by dust continuum emission was found for both Galactic clumps and the high redshift (z > 1) star forming galaxies (SFGs), indicating a constant gas depletion time of similar to 100 Myr for molecular gas in both Galactic clumps and high z SFGs. However, low z galaxies do not follow this relation and seem to have a longer global gas depletion time. The correlations between total infrared luminosities (L-TIR) and molecular line luminosities (L-mol') of HCN (4-3) and CS (7-6) are tight and sublinear extending down to clumps with L-TIR similar to 10(3) L-circle dot. These correlations become linear when extended to external galaxies. A bimodal behavior in the L-TIR-L-mol' correlations was found for clumps with different dust temperature, luminosity-to-mass ratio, and sigma(line)/sigma(vir). Such bimodal behavior may be due to evolutionary effects. The slopes of L-TIR-L-mol' correlations become more shallow as clumps evolve. We compared our results with lower J transition lines in Wu et al. (2010). The correlations between clump masses and line luminosities are close to linear for low effective excitation density tracers but become sublinear for high effective excitation density tracers for clumps with L-TIR larger than L-TIR similar to 10(4.5) L-circle dot. High effective excitation density tracers cannot linearly trace the total clump masses, leading to a sublinear correlations for both M-clump-L-mol' and L-TIR-L-mol' relations.
  • Lahen, Natalia; Naab, Thorsten; Johansson, Peter H.; Elmegreen, Bruce; Hu, Chia-Yu; Walch, Stefanie (2019)
    We present a hydrodynamical simulation at sub-parsec and few-solar-mass resolution of a merger between two gas-rich dwarf galaxies. Our simulation includes a detailed model for the multi-phase interstellar medium and is able to follow the entire formation history of spatially resolved star clusters, including feedback from individual massive stars. Shortly after the merger we find a population of similar to 900 stellar clusters with masses above 10(2.5) M-circle dot and a cluster mass function (CMF), which is well fitted with a power law with a slope of alpha = -1.70 +/- 0.08. We describe here in detail the formation of the three most massive clusters (M-* greater than or similar to 10(5) M-circle dot), which populate the high-mass end of the CMF. The simulated clusters form rapidly on a timescale of 6-8 Myr in converging flows of dense gas. The embedded merger phase has extremely high star formation rate surface densities of Sigma(SFR) > 10 M-circle dot yr(-1) kpc(-2) and thermal gas pressures in excess of Pth similar to 10(7) K-B cm(-3))(-1). The formation process is terminated by rapid gas expulsion driven by the first generation of supernovae, after which the cluster centers relax and both their structure and kinematics become indistinguishable from observed local globular clusters (GCs). The simulation presented here provides a general model for the formation of metal-poor GCs in chemically unevolved starbursting environments of low-mass dwarf galaxies, which are common at high redshifts.
  • Krieger, Nico; Bolatto, Alberto D.; Walter, Fabian; Leroy, Adam K.; Zschaechner, Laura K.; Meier, David S.; Ott, Jurgen; Weiss, Axel; Mills, Elisabeth A. C.; Levy, Rebecca C.; Veilleux, Sylvain; Gorski, Mark (2019)
    We present 0.'' 15 (similar to 2.5 pc) resolution ALMA CO(3-2) observations of the starbursting center in NGC 253. Together with archival ALMA CO(1-0) and CO(2-1) data, we decompose the emission into disk and nondisk components. We find similar to 7%-16% of the CO luminosity to be associated with the nondisk component (1.2-4.2 x 10(7) K km s(-1) pc(2)). The total molecular gas mass in the center of NGC 253 is similar to 3.6 x 10(8) M-circle dot with similar to 0.5 x 10(8) M-circle dot (similar to 15%) in the nondisk component. These measurements are consistent across independent mass estimates through three CO transitions. The high-resolution CO(3-2) observations allow us to identify the molecular outflow within the nondisk gas. Using a starburst conversion factor, we estimate the deprojected molecular mass outflow rate, kinetic energy, and momentum in the starburst of NGC 253. The deprojected molecular mass outflow rate is in the range of similar to 14-39 M-circle dot yr(-1) with an uncertainty of 0.4 dex. The large spread arises due to different interpretations of the kinematics of the observed gas while the errors are due to unknown geometry. The majority of this outflow rate is contributed by distinct outflows perpendicular to the disk, with a significant contribution by diffuse molecular gas. This results in a mass-loading factor eta = (M) over dot(out)/(M) over dot(SFR) in the range eta similar to 8-20 for gas ejected out to similar to 300 pc. We find the kinetic energy of the outflow to be similar to 2.5-4.5 x 10(54) erg and a typical error of similar to 0.8 dex, which is similar to 0.1% of the total or similar to 8% of the kinetic energy supplied by the starburst. The outflow momentum is 4.8-8.7 x 10(8) M-circle dot km s(-1) (similar to 0.5 dex error) or similar to 2.5%-4% of the kinetic momentum released into the ISM by the feedback. The unknown outflow geometry and launching sites are the primary sources of uncertainty in this study.
  • Käpylä, M. J.; Gent, F. A.; Väisälä, M. S.; Sarson, G. R. (2018)
    Context. The forcing of interstellar turbulence, driven mainly by supernova (SN) explosions, is irrotational in nature, but the development of significant amounts of vorticity and helicity, accompanied by large-scale dynamo action, has been reported. Aims. Several earlier investigations examined vorticity production in simpler systems; here all the relevant processes can be considered simultaneously. We also investigate the mechanisms for the generation of net helicity and large-scale flow in the system. Methods. We use a three-dimensional, stratified, rotating and shearing local simulation domain of the size 1 x 1 x 2 kpc(3), forced with SN explosions occurring at a rate typical of the solar neighbourhood in the MilkyWay. In addition to the nominal simulation run with realistic Milky Way parameters, we vary the rotation and shear rates, but keep the absolute value of their ratio fixed. Reversing the sign of shear vs. rotation allows us to separate the rotation-and shear-generated contributions. Results. As in earlier studies, we find the generation of significant amounts of vorticity, the rotational flow comprising on average 65% of the total flow. The vorticity production can be related to the baroclinicity of the flow, especially in the regions of hot, dilute clustered supernova bubbles. In these regions, the vortex stretching acts as a sink of vorticity. In denser, compressed regions, the vortex stretching amplifies vorticity, but remains sub-dominant to baroclinicity. The net helicities produced by rotation and shear are of opposite signs for physically motivated rotation laws, with the solar neighbourhood parameters resulting in the near cancellation of the total net helicity. We also find the excitation of oscillatory mean flows, the strength and oscillation period of which depend on the Coriolis and shear parameters; we interpret these as signatures of the anisotropic-kinetic-alpha (AKA) effect. We use the method of moments to fit for the turbulent transport coefficients, and find alpha(AKA) values of the order 3-5 km s(-1). Conclusions. Even in a weakly rotationally and shear-influenced system, small-scale anisotropies can lead to significant effects at large scales. Here we report on two consequences of such effects, namely on the generation of net helicity and on the emergence of large-scale flows by the AKA effect, the latter detected for the first time in a direct numerical simulation of a realistic astrophysical system.