Browsing by Subject "galaxies: active"

Sort by: Order: Results:

Now showing items 1-19 of 19
  • Vardoulaki, E.; Andrade, E. F. Jimenez; Karim, A.; Novak, M.; Leslie, S. K.; Tisanic, K.; Smolcic, V.; Schinnerer, E.; Sargent, M. T.; Bondi, M.; Zamorani, G.; Magnelli, B.; Bertoldi, F.; Ruiz, N. Herrera; Mooley, K. P.; Delhaize, J.; Myers, S. T.; Marchesi, S.; Koekemoer, A. M.; Gozaliasl, G.; Finoguenov, A.; Middleberg, E.; Ciliegi, P. (2019)
    Context. Given the unprecedented depth achieved in current large radio surveys, we are starting to probe populations of radio sources that have not been studied in the past. However, identifying and categorising these objects, differing in size, shape and physical properties, is becoming a more difficult task. Aims. In this data paper we present and characterise the multi-component radio sources identified in the VLA-COSMOS Large Project at 3 GHz (0.75 arcsec resolution, 2.3 mu Jy beam(-1) rms), i.e. the radio sources which are composed of two or more radio blobs. Methods. The classification of objects into multi-components was done by visual inspection of 351 of the brightest and most extended blobs from a sample of 10,899 blobs identified by the automatic code BLOBCAT. For that purpose we used multi-wavelength information of the field, such as the 1.4 GHz VLA-COSMOS data and the Ultra Deep Survey with the VISTA telescope (UltraVISTA) stacked mosaic available for COSMOS. Results. We have identified 67 multi-component radio sources at 3 GHz: 58 sources with active galactic nucleus (AGN) powered radio emission and nine star-forming galaxies. We report eight new detections that were not observed by the VLA-COSMOS Large Project at 1.4 GHz, due to the slightly larger area coverage at 3 GHz. The increased spatial resolution of 0.75 arcsec has allowed us to resolve (and isolate) multiple emission peaks of 28 extended radio sources not identified in the 1.4 GHz VLA-COSMOS map. We report the multi-frequency flux densities (324 MHz, 325 MHz, 1.4 GHz & 3 GHz), star formation rates, and stellar masses of these objects. We find that multi-component objects at 3 GHz VLA-COSMOS inhabit mainly massive galaxies (>10(10.5)M(circle dot)). The majority of the multi-component AGN lie below the main sequence of star-forming galaxies (SFGs), in the green valley and the quiescent region. Furthermore, we provide detailed descriptions of the objects and find that amongst the AGN there are two head-tail, ten corelobe, nine wide-angle-tail (WAT), eight double-double or Z-/X-shaped, three bent-tail radio sources, and 26 symmetric sources, while amongst the SFGs we find the only star-forming ring seen in radio emission in COSMOS. Additionally, we report a large number (32 out of 58) of disturbed/bent multi-component AGN, 18 of which do not lie within X-ray groups in COSMOS (redshift range 0.08 Conclusion. The high angular resolution and sensitivity of the 3 GHz VLA-COSMOS data set give us the opportunity to identify peculiar radio structures and sub-structures of multi-component objects, and relate them to physical phenomena such as AGN or star-forming galaxies. This study illustrates the complexity of the mu Jy radio-source population; at the sensitivity and resolution of 3 GHz VLA-COSMOS, the radio structures of AGN and SFG both emitting radio continuum emission, become comparable in the absence of clear, symmetrical jets. Thus, disentangling the AGN and SFG contributions using solely radio observations can be misleading in a number of cases. This has implications for future surveys, such as those done by square kilometre array (SKA) and precursors, which will identify hundreds of thousands of multi-component objects.
  • Valentino, Francesco; Daddi, Emanuele; Finoguenov, Alexis; Strazzullo, Veronica; Le Brun, Amandine; Vignali, Cristian; Bournaud, Frederic; Dickinson, Mark; Renzini, Alvio; Bethermin, Matthieu; Zanella, Anita; Gobat, Raphael; Cimatti, Andrea; Elbaz, David; Onodera, Masato; Pannella, Maurilio; Sargent, Mark; Arimoto, Nobuo; Carollo, Marcella; Starck, Jean-Luc (2016)
    We present the discovery of a giant >= 100 kpc Ly alpha nebula detected in the core of the X-ray emitting cluster CL J1449 +0856 at z = 1.99 through Keck/LRIS narrow-band imaging. This detection extends the known relation between Lya nebulae and overdense regions of the universe to the dense core of a 5-7 x 10(13) M-circle dot cluster. The most plausible candidates to power the nebula are two Chandra-detected AGN host cluster members, while cooling from the X-ray phase and cosmological cold flows are disfavored primarily because of the high Ly alpha to X-ray luminosity ratio (L-Ly alpha/L-X approximate to 0.3, greater than or similar to 10-1000 times. higher than in local cool-core clusters) and by current modeling. Given the physical conditions of the Ly alpha-emitting gas and the possible interplay with the X-ray phase, we argue that the Ly alpha nebula would be short-lived (less than or similar to 10 Myr) if not continuously replenished with cold gas at a rate of greater than or similar to 1000 M-circle dot yr(-1). We investigate the possibility that cluster galaxies supply the required gas through outflows and we show that their total mass outflow rate matches the replenishment necessary to sustain the nebula. This scenario directly implies the extraction of energy from galaxies and its deposition in the surrounding intracluster medium (ICM), as required to explain the thermodynamic properties of local clusters. We estimate an energy injection of the order of approximate to 2 keV per particle in the ICM over a 2 Gyr interval. In our baseline calculation, AGNs provide up to 85% of the injected energy and two-thirds. of the mass, while the rest is supplied by supernovae-driven winds.
  • Comparat, J.; Merloni, A.; Salvato, M.; Nandra, K.; Boller, T.; Georgakakis, A.; Finoguenov, A.; Dwelly, T.; Buchner, J.; Del Moro, A.; Clerc, N.; Wang, Y.; Zhao, G.; Prada, F.; Yepes, G.; Brusa, M.; Krumpe, M.; Liu, T. (2019)
    In the context of the upcoming SRG/eROSITA survey, we present an N-body simulation-based mock catalogue for X-ray-selected active galactic nucleus (AGN) samples. The model reproduces the observed hard X-ray AGN luminosity function (XLF) and the soft X-ray logN-logS from redshift 0 to 6. The XLF is reproduced to within +/- 5 per cent and the logN-logS to within +/- 20 per cent. We develop a joint X-ray - optical extinction and classification model. We adopt a set of empirical spectral energy distributions to predict observed magnitudes in the UV, optical, and NIR. With the latest eROSITA all sky survey sensitivity model, we create a high-fidelity full-sky mock catalogue of X-ray AGN. It predicts their distributions in right ascension, declination, redshift, and fluxes. Using empirical medium resolution optical spectral templates and an exposure time calculator, we find that 1.1 x 10(6) (4 x 10(5)) fibre-hours are needed to follow-up spectroscopically from the ground the detected X-ray AGN with an optical magnitude 21 <r <22.8 (22.8 <r <25) with a 4-m (8-m) class multiobject spectroscopic facility. We find that future clustering studies will measure the AGN bias to the per cent level at redshift z <1.2 and should discriminate possible scenarios of galaxy-AGN co-evolution. We predict the accuracy to which the baryon acoustic oscillation standard ruler will be measured using X-ray AGN: better than 3 per cent for AGN between redshift 0.5 to 3 and better than 1 per cent using the Ly alpha forest of X-ray QSOs discovered between redshift 2 and 3. eROSITA will provide an outstanding set of targets for future galaxy evolution and cosmological studies.
  • Georgakakis, A.; Comparat, J.; Merloni, A.; Ciesla, L.; Aird, J.; Finoguenov, A. (2019)
    A semi-empirical model is presented that describes the distribution of active galactic nuclei (AGNs) on the cosmicweb. It populates dark-matter haloes in N-body simulations (MultiDark) with galaxy stellar masses using empirical relations based on abundance matching techniques, and then paints accretion events on these galaxies using state-of-the-art measurements of the AGN occupation of galaxies. The explicit assumption is that the large-scale distribution of AGN is independent of the physics of black hole fuelling. The model is shown to be consistent with current measurements of the two-point correlation function of AGN samples. It is then used to make inferences on the halo occupation of the AGN population. Mock AGNs are found in haloes with a broad distribution of masses with a mode of approximate to 10(12) h(-1) M-circle dot and a tail extending to cluster-size haloes. The clustering properties of the model AGN depend only weakly on accretion luminosity and redshift. The fraction of satellite AGN in the model increases steeply toward more massive haloes, in contrast with some recent observational results. This discrepancy, if confirmed, could point to a dependence of the halo occupation of AGN on the physics of black hole fuelling.
  • Kalita, Boris S.; Daddi, Emanuele; Coogan, Rosemary T.; Delvecchio, Ivan; Gobat, Raphael; Valentino, Francesco; Strazzullo, Veronica; Tremou, Evangelia; Gomez-Guijarro, Carlos; Elbaz, David; Finoguenov, Alexis (2021)
    We report the detection of multiple faint radio sources, that we identify as active galactic nucleus (AGN) jets, within CLJ1449+0856 at z = 2 using 3 GHz Very Large Array observations. We study the effects of radio-jet-based kinetic feedback at high redshifts, which has been found to be crucial in low-redshift clusters to explain the observed thermodynamic properties of their intracluster medium (ICM). We investigate this interaction at an epoch featuring high levels of AGN activity and a transitional phase of ICM in regards to the likelihood of residual cold gas accretion. We measure a total flux of 30.6 +/- 3.3 mu Jy from the six detected jets. Their power contribution is estimated to be 1.2 (+/- 0.6) x 10(44) erg s(-1), although this value could be up to 4.7 x 10(44) erg s(-1). This is a factor of similar to 0.25-1.0 of the previously estimated instantaneous energy injection into the ICM of CLJ1449+0856 from AGN outflows and star formation that have already been found to be sufficient in globally offsetting the cooling flows in the cluster core. In line with the already detected abundance of star formation, this mode of feedback being distributed over multiple sites, contrary to a single central source observed at low redshifts, points to accretion of gas into the cluster centre. This also suggests a 'steady state' of the cluster featuring non-cool-core-like behaviour. Finally, we also examine the total infrared-radio luminosity ratio for the known sample of galaxies within the cluster core and find that dense environments do not have any serious consequence on the compliance of galaxies to the infrared-radio correlation.
  • Vardoulaki, E.; Jimenez Andrade, E. F.; Delvecchio, I.; Zagreb, University; Schinnerer, E.; Sargent, M. T.; Gozaliasl, G.; Finoguenov, A.; Bondi, M.; Zamorani, G.; Badescu, T.; Leslie, S. K.; Ceraj, L.; Tisanic, K.; Karim, A.; Magnelli, B.; Bertoldi, F.; Romano-Diaz, E.; Harrington, K. (2021)
    Context. Radio active galactic nuclei (AGN) are traditionally separated into two Fanaroff-Riley (FR) type classes, edge-brightened FRII sources or edge-darkened FRI sources. With the discovery of a plethora of radio AGN of different radio shapes, this dichotomy is becoming too simplistic in linking the radio structure to the physical properties of radio AGN, their hosts, and their environment.Aims. We probe the physical properties and large-scale environment of radio AGN in the faintest FR population to date, and link them to their radio structure. We use the VLA-COSMOS Large Project at 3 GHz (3 GHz VLA-COSMOS), with a resolution and sensitivity of 75 0 75 and 2.3 mu Jy beam(-1) to explore the FR dichotomy down to mu Jy levels.Methods. We classified objects as FRIs, FRIIs, or hybrid FRI/FRII based on the surface-brightness distribution along their radio structure. Our control sample was the jet-less/compact radio AGN objects (COM AGN), which show excess radio emission at 3 GHz VLA-COSMOS exceeding what is coming from star-formation alone; this sample excludes FRs. The largest angular projected sizes of FR objects were measured by a machine-learning algorithm and also by hand, following a parametric approach to the FR classification. Eddington ratios were calculated using scaling relations from the X-rays, and we included the jet power by using radio luminosity as a probe. Furthermore, we investigated their host properties (star-formation ratio, stellar mass, morphology), and we explore their incidence within X-ray galaxy groups in COSMOS, and in the density fields and cosmic-web probes in COSMOS.Results. Our sample is composed of 59 FRIIs, 32 FRI/FRIIs, 39 FRIs, and 1818 COM AGN at 0.03 (238.2)(36.9) 36.9 238.2 kpc, larger than that of FRI/FRIIs and FRIs by a factor of 2-3. The COM AGN have sizes smaller than 30 kpc, with a median value of 1.7 (4.7)(1.5) 1.5 4.7 kpc. The median Eddington ratio of FRIIs is 0.006 (0.007)(0.005) 0.005 0.007 , a factor of 2.5 less than in FRIs and a factor of 2 higher than in FRI/FRII. When the jet power is included, the median Eddington ratios of FRII and FRI/FRII increase by a factor of 12 and 15, respectively. FRs reside in their majority in massive quenched hosts (M-*>10(10.5) M-circle dot), with older episodes of star-formation linked to lower X-ray galaxy group temperatures, suggesting radio-mode AGN quenching. Regardless of their radio structure, FRs and COM AGN are found in all types and density environments (group or cluster, filaments, field).Conclusions. By relating the radio structure to radio luminosity, size, Eddington ratio, and large-scale environment, we find a broad distribution and overlap of FR and COM AGN populations. We discuss the need for a different classification scheme, that expands the classic FR classification by taking into consideration the physical properties of the objects rather than their projected radio structure which is frequency-, sensitivity- and resolution-dependent. This point is crucial in the advent of current and future all-sky radio surveys.
  • McAlpine, Stuart; Harrison, Chris M.; Rosario, David J.; Alexander, David M.; Ellison, Sara L.; Johansson, Peter H.; Patton, David R. (2020)
    We investigate the connection between galaxy-galaxy mergers and enhanced black hole (BH) growth using the cosmological hydrodynamical EAGLE simulation. We do this via three methods of analysis, investigating: the merger fraction of AGN, the AGN fraction of merging systems, and the AGN fraction of galaxies with close companions. In each case, we find an increased abundance of AGN within merging systems relative to control samples of inactive or isolated galaxies (by up to a factor of approximate to 3 depending on the analysis method used), confirming that mergers are enhancing BH accretion rates for at least a subset of the galaxy population. The greatest excess of AGN triggered via a merger are found in lower mass (M-* similar to 10(10) M-circle dot) gas rich (f(gas) > 0.2) central galaxies with lower mass BHs (M-BH similar to 10(7) M-circle dot) at lower redshifts (z <1). We find no enhancement of AGN triggered via mergers in more massive galaxies (M-* greater than or similar to 10(11) M-circle dot). The enhancement of AGN is not uniform throughout the phases of a merger, and instead peaks within the early remnants of merging systems (typically lagging approximate to 300 Myr post-coalescence of the two galaxies at z = 0.5). We argue that neither major (M-*,M-1/M-*,M-2 = 1/4) nor minor mergers (1/10 <M-*,M-1/M-*,M-2 <1/4) are statistically relevant for enhancing BH masses globally. Whilst at all redshifts the galaxies experiencing a merger have accretion rates that are on average 2-3 times that of isolated galaxies, the majority of mass that is accreted on to BHs occurs outside the periods of a merger. We compute that on average no more than 15 per cent of a BHs final day mass comes from the enhanced accretion rates triggered via a merger.
  • Allevato, V.; Civano, F.; Finoguenov, A.; Marchesi, S.; Shankar, F.; Zamorani, G.; Hasinger, G.; Salvato, M.; Miyaji, T.; Gilli, R.; Cappelluti, N.; Brusa, M.; Suh, H.; Lanzuisi, G.; Trakhtenbrot, B.; Griffiths, R.; Vignali, C.; Schawinski, K.; Karim, A. (2016)
    We present the measurement of the projected and redshift-space two-point correlation function (2pcf) of the new catalog of Chandra COSMOS-Legacy active galactic nucleus (AGN) at 2.9 similar to 10(46) erg s(-1)) using the generalized clustering estimator based on phot-z probability distribution functions in addition to any available spec-z. We model the projected 2pcf, estimated using pi(max) = 200 h(-1) Mpc with the two-halo term and we derive a bias at z similar to 3.4 equal to b. =. 6.6(+0.60) -(0.55), which corresponds to a typical mass of the hosting halos of log M-h. =. 12.83(+0.12) -(0.11) h(-1)M circle dot. A similar bias is derived using the redshift-space 2pcf, modeled including the typical phot-z error sigma(z). =. 0.052 of our sample at z >= 2.9. Once we integrate the projected 2pcf up to pi(max). =. 200 h(-1) Mpc, the bias of XMM and Chandra COSMOS at z =. 2.8 used in Allevato et al. is consistent with our results at higher redshifts. The results suggest only a slight increase of the bias factor of COSMOS AGNs at z greater than or similar to 3 with the typical hosting halo mass of moderate-luminosity AGNs almost constant with redshift and equal to log M-h = 12.92(+0.-13) (0.18) at z - 2.8 and log M-h - 12.83(+0.11) (-0.12) at z similar to 3.4, respectively. The observed redshift evolution of the bias of COSMOS AGNs implies that moderate-luminosity AGNs. still inhabit group-sized halos at z greater than or similar to 3, but slightly less massive than observed in different independent studies using X-ray AGNs. at z less than or similar to 2.
  • Marchesi, S.; Civano, F.; Elvis, M.; Salvato, M.; Brusa, M.; Comastri, A.; Gilli, R.; Hasinger, G.; Lanzuisi, G.; Miyaji, T.; Treister, E.; Urry, C. M.; Vignali, C.; Zamorani, G.; Allevato, V.; Cappelluti, N.; Cardamone, C.; Finoguenov, A.; Griffiths, R. E.; Karim, A.; Laigle, C.; LaMassa, S. M.; Jahnke, K.; Ranalli, P.; Schawinski, K.; Schinnerer, E.; Silverman, J. D.; Smolcic, V.; Suh, H.; Trakhtenbrot, B. (2016)
    We present the catalog of optical and infrared counterparts of the Chandra. COSMOS-Legacy. Survey, a 4.6 Ms Chandra. program on the 2.2 deg(2) of the COSMOS field, combination of 56 new overlapping observations obtained in Cycle 14 with the previous C-COSMOS survey. In this Paper we report the i, K, and 3.6 mu m identifications of the 2273 X-ray point sources detected in the new Cycle 14 observations. We use the likelihood ratio technique to derive the association of optical/infrared (IR) counterparts for 97% of the X-ray sources. We also update the information for the 1743 sources detected in C-COSMOS, using new K and 3.6 mu 3m information not available when the C-COSMOS analysis was performed. The final catalog contains 4016 X-ray sources, 97% of which have an optical/IR counterpart and a photometric redshift, while; similar or equal to 54% of the sources have a spectroscopic redshift. The full catalog, including spectroscopic and photometric redshifts and optical and X-ray properties described here in detail, is available online. We study several X-ray to optical (X/O) properties: with our large statistics we put better constraints on the X/O flux ratio locus, finding a shift toward faint optical magnitudes in both soft and hard X-ray band. We confirm the existence of a correlation between X/O and the the 2-10 keV luminosity for Type 2 sources. We extend to low luminosities the analysis of the correlation between the fraction of obscured AGNs and the hard band luminosity, finding a different behavior between the optically and X-ray classified obscured fraction.
  • Marchesi, S.; Lanzuisi, G.; Civano, F.; Iwasawa, K.; Suh, H.; Comastri, A.; Zamorani, G.; Allevato, V.; Griffiths, R.; Miyaji, T.; Ranalli, P.; Salvato, M.; Schawinski, K.; Silverman, J.; Treister, E.; Urry, C. M.; Vignali, C. (2016)
    We present the X-ray spectral analysis of the 1855 extragalactic sources in the Chandra COSMOS-Legacy survey catalog having more than 30 net counts in the 0.5-7 keV band. A total of 38% of the sources are optically classified type 1 active galactic nuclei (AGNs), 60% are type 2 AGNs, and 2% are passive, low-redshift galaxies. We study the distribution of AGN photon index Gamma and of the intrinsic absorption N-H,N-z based on the sources' optical classification: type 1 AGNs have a slightly steeper mean photon index Gamma than type 2 AGNs, which, on the other hand, have average N-H,N-z similar to 3 times higher than type 1 AGNs. We find that similar to 15% of type 1 AGNs have N-H,N-z > 10(22) cm(-2), i.e., are obscured according to the X-ray spectral fitting; the vast majority of these sources have L2-10 (keV) > 10(44) erg s(-1). The existence of these objects suggests that optical and X-ray obscuration can be caused by different phenomena, the X-ray obscuration being, for example, caused by dust-free material surrounding the inner part of the nuclei. Approximately 18% of type 2 AGNs have N-H,N-z <10(22) cm(-2), and most of these sources have low X-ray luminosities (L2-10 (keV) <10(43) erg s(-1)). We expect a part of these sources to be low-accretion, unobscured AGNs lacking broad emission lines. Finally, we also find a direct proportional trend between N-H,N-z and host-galaxy mass and star formation rate, although part of this trend is due to a redshift selection effect.
  • Marchesi, S.; Civano, F.; Salvato, M.; Shankar, F.; Comastri, A.; Elvis, M.; Lanzuisi, G.; Trakhtenbrot, B.; Vignali, C.; Zamorani, G.; Allevato, V.; Brusa, M.; Fiore, F.; Gilli, R.; Griffiths, R.; Hasinger, G.; Miyaji, T.; Schawinski, K.; Treister, E.; Urry, C. M. (2016)
    We present the largest high-redshift (3 <z <6.85) sample of X-ray-selected active galactic nuclei (AGNs) on a contiguous field, using sources detected in the Chandra COSMOS-Legacy survey. The sample contains 174 sources, 87 with spectroscopic redshift and the other 87 with photometric redshift (z(phot)). In this work, we treat z(phot) as a probability-weighted sum of contributions, adding to our sample the contribution of sources with zphot. <3 but zphot probability distribution > 0 at z > 3. We compute the number counts in the observed 0.5-2 keV band, finding a decline in the number of sources at z > 3 and constraining phenomenological models of the X-ray background. We compute the AGN space density at z. > 3 in two different luminosity bins. At higher luminosities (logL(2-10 keV) > 44.1 erg s(-1)), the space density declines exponentially, dropping by a factor of similar to 20 from z similar to 3 to z similar to 6. The observed decline is similar to 80% steeper at lower luminosities (43.55 erg s(-1) <logL(2-10 keV) <44.1 erg s(-1)) from z similar to 3 to z similar to 4.5. We study the space density evolution dividing our sample into optically classified Type 1 and Type 2 AGNs. At logL (2-10 keV) > 44.1 erg s(-1), unobscured and obscured objects may have different evolution with redshift, with the obscured component being three times higher at z similar to 5. Finally, we compare our space density with predictions of quasar activation merger models, whose calibration is based on optically luminous AGNs. These models significantly overpredict the number of expected AGNs at logL (2-10 keV) > 44.1 erg s(-1) with respect to our data.
  • LaMassa, Stephanie M.; Glikman, Eilat; Brusa, Marcella; Rigby, Jane R.; Ananna, Tonima Tasnim; Stern, Daniel; Lira, Paulina; Urry, C. Megan; Salvato, Mara; Alexandroff, Rachael; Allevato, Viola; Cardamone, Carolin; Civano, Francesca; Coppi, Paolo; Farrah, Duncan; Komossa, S.; Lanzuisi, Giorgio; Marchesi, Stefano; Richards, Gordon; Trakhtenbrot, Benny; Treister, Ezequiel (2017)
    We present results of a ground-based near-infrared campaign with Palomar TripleSpec, Keck NIRSPEC, and Gemini GNIRS to target two samples of reddened active galactic nucleus (AGN) candidates from the 31 deg(2) Stripe 82 X-ray survey. One sample, which is similar to 89% complete to K <16 (Vega), consists of eight confirmed AGNs, four of which were identified with our follow-up program, and is selected to have red R - K colors (> 4, Vega). The fainter sample (K > 17, Vega) represents a pilot program to follow-up four sources from a parent sample of 34 that are not detected in the single-epoch SDSS catalog and have WISE quasar colors. All 12 sources are broad-line AGNs (at least one permitted emission line has an FWHM exceeding 1300 km s(-1)) and span a redshift range 0.59 <z <2.5. Half the (R - K)-selected AGNs have features in their spectra suggestive of outflows. When comparing these sources to a matched sample of blue Type 1 AGNs, we find that the reddened AGNs are more distant (z > 0.5), and a greater percentage have high X-ray luminosities (L-X,L- full > 10(44) erg s(-1)). Such outflows and high luminosities may be consistent with the paradigm that reddened broad-line AGNs represent a transitory phase in AGN evolution as described by the major merger model for black hole growth. Results from our pilot program demonstrate proof of concept that our selection technique is successful in discovering reddened quasars at z > 1 missed by optical surveys.
  • McAlpine, Stuart; Smail, Ian; Bower, Richard G.; Swinbank, A. M.; Trayford, James W.; Theuns, Tom; Baes, Maarten; Camps, Peter; Crain, Robert A.; Schaye, Joop (2019)
    We exploit EAGLE, a cosmological hydrodynamical simulation, to reproduce the selection of the observed submillimetre (submm) galaxy population by selecting the model galaxies at z >= 1 with mock submm fluxes S-850 mu m >= 1mJy. We find a reasonable agreement between the model galaxies within this sample and the properties of the observed submm population, such as their star formation rates (SFRs) at z <3, redshift distribution, and many integrated galaxy properties. We find that the median redshift of the S-850 (mu m) >= 1mJy model population is z approximate to 2.5, and that they are massive galaxies (M-* similar to 10(11)M(circle dot)) with high dust masses (M-dust similar to 10(8)M(circle dot)), gas fractions (f(gas) approximate to 50 per cent), and SFRs ((*) approximate to 100 M-circle dot yr(-1)). In addition, we find that they have major and minor merger fractions similar to the general population, suggesting that mergers are not the sole driver of the high SFRs in the model submm galaxies. Instead, the S-850 (mu m) >= 1mJy model galaxies yield high SFRs primarily because they maintain a significant gas reservoir as a result of hosting an undermassive black hole relative to comparably massive galaxies. Not all 'highly star-forming' ((*) >= 80M(circle dot) yr(-1)) EAGLE galaxies have submm fluxes S-850 (mu m) >= 1 mJy. We investigate the nature of these highly star-forming 'Submm-Faint' galaxies (i.e. (*) = 80 M-circle dot yr(-1) but S-850 (mu m) <1mJy) and find that they are similar to the model submm galaxies, being gas rich and hosting undermassive black holes. However, they are also typically at higher redshifts (z > 4) and are lower mass (M-* similar to 10(10) M-circle dot). These typically higher redshift galaxies show stronger evidence for having been triggered by major mergers, and critically, they are likely missed by most current submm surveys due to their higher dust temperatures and lower dust masses.
  • Viitanen, A.; Allevato, V.; Finoguenov, A.; Shankar, F.; Marsden, C. (2021)
    The co-evolution between central supermassive black holes (BHs), their host galaxies, and dark matter haloes is still a matter of intense debate. Present theoretical models suffer from large uncertainties and degeneracies, for example, between the fraction of accreting sources and their characteristic accretion rate. In recent work, we showed that active galactic nuclei (AGNs) clustering represents a powerful tool to break degeneracies when analysed in terms of mean BH mass, and that AGN bias at fixed stellar mass is largely independent of most of the input parameters, such as the AGN duty cycle and the mean scaling between BH mass and host galaxy stellar mass. In this paper, we take advantage of our improved semi-empirical methodology and recent clustering data derived from large AGN samples at z similar to 1.2, demonstrate that the AGN bias as a function of host galaxy stellar mass is a crucial diagnostic of the BH-galaxy connection, and is highly dependent on the scatter around the BH mass-galaxy mass scaling relation and on the relative fraction of satellite and central active BHs. Current data at z similar to 1.2 favour relatively high values of AGN in satellites, pointing to a major role of disc instabilities in triggering AGN, unless a high minimum host halo mass is assumed. The data are not decisive on the magnitude/covariance of the BH-galaxy scatter at z similar to 1.2 and intermediate host masses M-star less than or similar to 10(11) M-star. However, future surveys like Euclid/LSST will be pivotal in shedding light on the BH-galaxy co-evolution.
  • Jackson, Thomas M.; Rosario, D. J.; Alexander, D. M.; Scholtz, J.; McAlpine, Stuart; Bower, R. G. (2020)
    In this paper, we present data from 72 low-redshift, hard X-ray selected active galactic nucleus (AGN) taken from the Swift-BAT 58 month catalogue. We utilize spectral energy distribution fitting to the optical to infrared photometry in order to estimate host galaxy properties. We compare this observational sample to a volume- and flux-matched sample of AGN from the Evolution and Assembly of GaLaxies and their Environments (EAGLE) hydrodynamical simulations in order to verify how accurately the simulations can reproduce observed AGN host galaxy properties. After correcting for the known +0.2 dex offset in the SFRs between EAGLE and previous observations, we find agreement in the star formation rate (SFR) and X-ray luminosity distributions; however, we find that the stellar masses in EAGLE are 0.2-0.4 dex greater than the observational sample, which consequently leads to lower specific star formation rates (sSFRs). We compare these results to our previous study at high redshift, finding agreement in both the observations and simulations, whereby the widths of sSFR distributions are similar (similar to 0.4-0.6 dex) and the median of the SFR distributions lie below the star-forming main sequence by similar to 0.3-0.5 dex across all samples. We also use EAGLE to select a sample of AGN host galaxies at high and low redshift and follow their characteristic evolution from z = 8 to z = 0. We find similar behaviour between these two samples, whereby star formation is quenched when the black hole goes through its phase of most rapid growth. Utilizing EAGLE we find that 23 per cent of AGN selected at z similar to 0 are also AGN at high redshift, and that their host galaxies are among the most massive objects in the simulation. Overall, we find EAGLE reproduces the observations well, with some minor inconsistencies (similar to 0.2 dex in stellar masses and similar to 0.4 dex in sSFRs).
  • Viitanen, A.; Allevato, V.; Finoguenov, A.; Bongiorno, A.; Cappelluti, N.; Gilli, R.; Miyaji, T.; Salvato, M. (2019)
    Aims. We study the spatial clustering of 632 (1130) XMM-COSMOS active galactic nuclei (AGNs) with known spectroscopic or photometric redshifts in the range z = [0.1-2.5] in order to measure the AGN bias and estimate the typical mass of the hosting dark matter (DM) halo as a function of AGN host galaxy properties. Methods. We created AGN subsamples in terms of stellar mass, M-*, and specific black hole accretion rate, L-X/M-*, to study how AGN environment depends on these quantities. Further, we derived the M-*-M-halo relation for our sample of XMM-COSMOS AGNs and compared it to results in literature for normal non-active galaxies. We measured the projected two-point correlation function w(p)(r(p)) using both the classic and the generalized clustering estimator, based on photometric redshifts, as probability distribution functions in addition to any available spectroscopic redshifts. We measured the large-scale (r(p) greater than or similar to 1h(-1) Mpc) linear bias b by comparing the clustering signal to that expected of the underlying DM distribution. The bias was then related to the typical mass of the hosting halo M-halo of our AGN subsamples. Since M-* and L-X/M-* are correlated, we matched the distribution in terms of one quantity and we split the distribution in the other. Results. For the full spectroscopic AGN sample, we measured a typical DM halo mass of log(M-halo/h(-1)M(circle dot)) = 12.79(-0.43)(+0.26), similar to galaxy group environments and in line with previous studies for moderate-luminosity X-ray selected AGN. We find no significant dependence on specific accretion rate L-X/M-* with log(M-halo/h(-1)M(circle dot)) = 13.06(-0.38)(+0.23) and log(M-halo/h(-1)M(circle dot)) = 12.97(-1.26)(+0.39) for low and high Lx/M, subsamples, respectively. We also find no difference in the hosting halos in terms of M, with log(M-halo/h(-1)M(circle dot)) = 12.93(-0.62)(+0.31) (low) and log(M-halo/h(-1)M(circle dot)) = 12.90(-0.62)(+0.30) (high). By comparing the M-*-M-halo relation derived for XMM-COSMOS AGN subsamples with what is expected for normal non-active galaxies by abundance matching and clustering results, we find that the typical DM halo mass of our high M-* AGN subsample is similar to that of non-active galaxies. However, AGNs in our low M-* subsample are found in more massive halos than non-active galaxies. By excluding AGNs in galaxy groups from the clustering analysis, we find evidence that the result for low M-* may be due to larger fraction of AGNs as satellites in massive halos.
  • Paolillo, M.; Papadakis, I.; Brandt, W. N.; Luo, B.; Xue, Y. Q.; Tozzi, P.; Shemmer, O.; Allevato, V.; Bauer, F. E.; Comastri, A.; Gilli, R.; Koekemoer, A. M.; Liu, T.; Vignali, C.; Vito, F.; Yang, G.; Wang, J. X.; Zheng, X. C. (2017)
    We study the X-ray variability properties of distant active galactic nuclei (AGNs) in the Chandra Deep Field-South region over 17 yr, up to z similar to 4, and compare them with those predicted by models based on local samples. We use the results of Monte Carlo simulations to account for the biases introduced by the discontinuous sampling and the low-count regime. We confirm that variability is a ubiquitous property of AGNs, with no clear dependence on the density of the environment. The variability properties of high-z AGNs, over different temporal time-scales, are most consistent with a power spectral density (PSD) described by a broken (or bending) power law, similar to nearby AGNs. We confirm the presence of an anticorrelation between luminosity and variability, resulting from the dependence of variability on black hole (BH) mass and accretion rate. We explore different models, finding that our acceptable solutions predict that BH mass influences the value of the PSD break frequency, while the lambda(Edd) ington ratio lambda(Edd) affects the PSD break frequency and, possibly, the PSD amplitude as well. We derive the evolution of the average.Edd as a function of redshift, finding results in agreement with measurements based on different estimators. The large statistical uncertainties make our results consistent with a constant Eddington ratio, although one of our models suggest a possible increase of lambda(Edd) with lookback time up to z similar to 2-3. We conclude that variability is a viable mean to trace the accretion history of supermassive BHs, whose usefulness will increase with future, wide-field/large effective area X-ray missions.
  • Suh, Hyewon; Civano, Francesca; Hasinger, Guenther; Lusso, Elisabeta; Lanzuisi, Giorgio; Marchesi, Stefano; Trakhtenbrot, Benny; Allevato, Viola; Cappelluti, Nico; Capak, Peter L.; Elvis, Martin; Griffiths, Richard E.; Laigle, Clotilde; Lira, Paulina; Riguccini, Laurie; Rosario, David J.; Salvato, Mara; Schawinski, Kevin; Vignali, Cristian (2017)
    We investigate the star formation properties of a large sample of similar to 2300 X-ray-selected Type 2 Active Galactic Nuclei (AGNs) host galaxies out to z similar to 3 in the Chandra COSMOS Legacy Survey in order to understand the connection between the star formation and nuclear activity. Making use of the existing multi-wavelength photometric data available in the COSMOS field, we perform a multi-component modeling from far-infrared to near-ultraviolet using a nuclear dust torus model, a stellar population model and a starburst model of the spectral energy distributions (SEDs). Through detailed analyses of SEDs, we derive the stellar masses and the star formation rates (SFRs) of Type 2 AGN host galaxies. The stellar mass of our sample is in the range of 9 <logM(stellar)/M-circle dot <12 with uncertainties of similar to 0.19 dex. We find that Type 2 AGN host galaxies have, on average, similar SFRs compared to the normal star-forming galaxies with similar M-stellar and redshift ranges, suggesting no significant evidence for enhancement or quenching of star formation. This could be interpreted in a scenario, where the relative massive galaxies have already experienced substantial growth at higher redshift (z > 3), and grow slowly through secular fueling processes hosting moderate-luminosity AGNs.
  • Kocevski, Dale D.; Hasinger, Guenther; Brightman, Murray; Nandra, Kirpal; Georgakakis, Antonis; Cappelluti, Nico; Civano, Francesca; Li, Yuxuan; Li, Yanxia; Aird, James; Alexander, David M.; Almaini, Omar; Brusa, Marcella; Buchner, Johannes; Comastri, Andrea; Conselice, Christopher J.; Dickinson, Mark A.; Finoguenov, Alexis; Gilli, Roberto; Koekemoer, Anton M.; Miyaji, Takamitsu; Mullaney, James R.; Papovich, Casey; Rosario, David; Salvato, Mara; Silverman, John D.; Somerville, Rachel S.; Ueda, Yoshihiro (2018)
    We present the X-UDS survey, a set of wide and deep Chandra observations of the Subaru-XMM Deep/UKIDSS Ultra Deep Survey (SXDS/UDS) field. The survey consists of 25 observations that cover a total area of 0.33 deg(2). The observations are combined to provide a nominal depth of similar to 600 ks in the central 100 arcmin(2) region of the field that has been imaged with Hubble/WFC3 by the CANDELS survey and similar to 200 ks in the remainder of the field. In this paper, we outline the survey's scientific goals, describe our observing strategy, and detail our data reduction and point source detection algorithms. Our analysis has resulted in a total of 868 band-merged point sources detected with a false-positive Poisson probability of