Browsing by Subject "galaxies: clusters: general"

Sort by: Order: Results:

Now showing items 1-20 of 40
  • Smolcic, V.; Miettinen, O.; Tomicic, N.; Zamorani, G.; Finoguenov, A.; Lemaux, B. C.; Aravena, M.; Capak, P.; Chiang, Y. -K.; Civano, F.; Delvecchio, I.; Ilbert, O.; Jurlin, N.; Karim, A.; Laigle, C.; Le Fevre, O.; Marchesi, S.; McCracken, H. J.; Riechers, D. A.; Salvato, M.; Schinnerer, E.; Tasca, L.; Toft, S. (2017)
    We investigate the environment of 23 submillimetre galaxies (SMGs) drawn from a signal-to-noise (S/N)-limited sample of SMGs originally discovered in the James Clerk Maxwell Telescope (JCMT)/AzTEC 1.1 mm continuum survey of a Cosmic Evolution Survey (COSMOS) subfield and then followed up with the Submillimetre Array and Plateau de Bure Interferometer at 890 mu m and 1.3 mm, respectively. These SMGs already have well-defined multiwavelength counterparts and redshifts. We also analyse the environments of four COSMOS SMGs spectroscopically confirmed to lie at redshifts z(spec) > 4 : 5, and one at z(spec) = 2 : 49 resulting in a total SMG sample size of 28. We search for overdensities using the COSMOS photometric redshifts based on over 30 UV-NIR photometric measurements including the new UltraVISTA data release 2 and Spitzer/SPLASH data, and reaching an accuracy of sigma(Delta z/(1+z)) = (1 + z) = 0 : 0067 (0 : 0155) at z <3 : 5 (> 3.5). To identify overdensities we apply the Voronoi tessellation analysis, and estimate the redshift-space overdensity estimator delta(g) as a function of distance from the SMG and/or overdensity centre. We test and validate our approach via simulations, X-ray detected groups or clusters, and spectroscopic verifications using VUDS and zCOSMOS catalogues which show that even with photometric redshifts in the COSMOS field we can e ffi ciently retrieve overdensities out to z approximate to 5. Our results yield that 11 out of 23 (48%) JCMT/AzTEC 1.1 mm SMGs occupy overdense environments. Considering the entire JCMT/AzTEC 1.1 mm S = N >= 4 sample and taking the expected fraction of spurious detections into account, this means that 35-61% of the SMGs in the S/N-limited sample occupy overdense environments. We perform an X-ray stacking analysis in the 0.5-2 keV band using a 32 '' aperture and our SMG positions, and find statistically significant detections. For our z <2 subsample we find an average flux of (4.0 +/- 0.8) x 10(-16) erg s(-1) cm(-2) and a corresponding total mass of M-200 = 2.8 x 10(13) M-circle dot. The z > 2 subsample yields an average flux of (1.3 +/- 0.5) x 10(-16) erg s(-1) cm(-2) and a corresponding total mass of M-200 = 2 x 10(13) M-circle dot. Our results suggest a higher occurrence of SMGs occupying overdense environments at z >= 3 than at z <3. This may be understood if highly star-forming galaxies can only be formed in the highest peaks of the density field tracing the most massive dark matter haloes at early cosmic epochs, while at later times cosmic structure may have matured su ffi ciently that more modest overdensities correspond to su ffi ciently massive haloes to form SMGs.
  • Mirkazemi, M.; Finoguenov, A.; Pereira, M. J.; Tanaka, M.; Lerchster, M.; Brimioulle, F.; Egami, E.; Kettula, K.; Erfanianfar, G.; McCracken, H. J.; Mellier, Y.; Kneib, J. P.; Rykoff, E.; Seitz, S.; Erben, T.; Taylor, J. E. (2015)
  • Jaffe, Yara L.; Verheijen, Marc A. W.; Haines, Chris P.; Yoon, Hyein; Cybulski, Ryan; Montero-Castano, Maria; Smith, Rory; Chung, Aeree; Deshev, Boris Z.; Fernandez, Ximena; van Gorkom, Jacqueline; Poggianti, Bianca M.; Yun, Min S.; Finoguenov, Alexis; Smith, Graham P.; Okabe, Nobuhiro (2016)
    In a hierarchical Universe clusters grow via the accretion of galaxies from the field, groups and even other clusters. As this happens, galaxies can lose and/or consume their gas reservoirs via different mechanisms, eventually quenching their star formation. We explore the diverse environmental histories of galaxies through a multiwavelength study of the combined effect of ram-pressure stripping and group 'processing' in Abell 963, a massive growing cluster at z = 0.2 from the Blind Ultra Deep HI Environmental Survey (BUDHIES). We incorporate hundreds of new optical redshifts (giving a total of 566 cluster members), as well as Subaru and XMM-Newton data from LoCuSS, to identify substructures and evaluate galaxy morphology, star formation activity, and HI content (via HI deficiencies and stacking) out to 3 x R-200. We find that Abell 963 is being fed by at least seven groups, that contribute to the large number of passive galaxies outside the cluster core. More massive groups have a higher fraction of passive and HI-poor galaxies, while low-mass groups host younger (often interacting) galaxies. For cluster galaxies not associated with groups we corroborate our previous finding that HI gas (if any) is significantly stripped via ram-pressure during their first passage through the intracluster medium, and find mild evidence for a starburst associated with this event. In addition, we find an overabundance of morphologically peculiar and/or star-forming galaxies near the cluster core. We speculate that these arise from the effect of groups passing through the cluster (post-processing). Our study highlights the importance of environmental quenching and the complexity added by evolving environments.
  • Gozaliasl, Ghassem; Finoguenov, Alexis; Tanaka, Masayuki; Dolag, Klaus; Montanari, Francesco; Kirkpatrick, Charles C.; Vardoulaki, Eleni; Khosroshahi, Habib G.; Salvato, Mara; Laigle, Clotilde; McCracken, Henry J.; Ilbert, Olivier; Cappelluti, Nico; Daddi, Emanuele; Hasinger, Guenther; Capak, Peter; Scoville, Nick Z.; Toft, Sune; Civano, Francesca; Griffiths, Richard E.; Balogh, Michael; Li, Yanxia; Ahoranta, Jussi; Mei, Simona; Iovino, Angela; Henriques, Bruno M. B.; Erfanianfar, Ghazaleh (2019)
    We present the results of a search for galaxy clusters and groups in the ∼2 deg2 of the COSMOS field using all available X-ray observations from the XMM-Newton and Chandra observatories.We reach an X-ray flux limit of 3 × 10−16 erg cm−2 s−1 in the 0.5-2 keV range, and identify 247 X-ray groups with M200c = 8 × 1012-3 × 1014M at a redshift range of 0.08 ≤ z < 1.53, using the multiband photometric redshift and the master spectroscopic redshift catalogues of the COSMOS. The X-ray centres of groups are determined using high-resolution Chandra imaging. We investigate the relations between the offset of the brightest group galaxies (BGGs) from halo X-ray centre and group properties and compare with predictions from semi-analytic models and hydrodynamical simulations. We find that BGG offset decreases with both increasing halo mass and decreasing redshift with no strong dependence on the X-ray flux and SNR. We show that the BGG offset decreases as a function of increasing magnitude gap with no considerable redshift-dependent trend. The stellar mass of BGGs in observations extends over a wider dynamic range compared to model predictions. At z < 0.5, the central dominant BGGs become more massive than those with large offsets by up to 0.3 dex, in agreement with model prediction. The observed and predicted log-normal scatter in the stellar mass of both low- and large-offset BGGs at fixed halo mass is ∼0.3 dex.
  • Lindholm, V.; Finoguenov, A.; Comparat, J.; Kirkpatrick, C. C.; Rykoff, E.; Clerc, N.; Collins, C.; Damsted, S.; Chitham, J. Ider; Padilla, N. (2021)
    Context. The clustering of galaxy clusters links the spatial nonuniformity of dark matter halos to the growth of the primordial spectrum of perturbations. The amplitude of the clustering signal is widely used to estimate the halo mass of astrophysical objects. The advent of cluster mass calibrations enables using clustering in cosmological studies.Aims. We analyze the autocorrelation function of a large contiguous sample of galaxy clusters, the Constrain Dark Energy with X-ray (CODEX) sample, in which we take particular care of cluster definition. These clusters were X-ray selected using the ROentgen SATellite All-Sky Survey and then identified as galaxy clusters using the code redMaPPer run on the photometry of the Sloan Digital Sky Survey. We develop methods for precisely accounting for the sample selection effects on the clustering and demonstrate their robustness using numerical simulations.Methods. Using the clean CODEX sample, which was obtained by applying a redshift-dependent richness selection, we computed the two-point autocorrelation function of galaxy clusters in the 0.1 Omega m0 = 0.22-0.03+0.04 Omega m 0 = 0 . 22 - 0.03 + 0.04 and S8 = sigma 8(Omega m0/0.3)0.5 = 0.85-0.08+0.10 S 8 = sigma 8 ( Omega m 0 / 0.3 ) 0.5 = 0 . 85 - 0.08 + 0.10 with estimated additional systematic errors of sigma Omega m0=0.02 and sigma S8=0.20. We illustrate the complementarity of clustering constraints by combining them with CODEX cosmological constraints based on the X-ray luminosity function, deriving Omega m0=0.25 +/- 0.01 and sigma (8) = 0.81(-0.02)(+0.01) sigma 8 = 0 . 81 - 0.02 + 0.01 with an estimated additional systematic error of sigma Omega m0=0.07 and sigma sigma 8=0.04. The mass calibration and statistical quality of the mass tracers are the dominant source of uncertainty.
  • Cibirka, N.; Cypriano, E. S.; Brimioulle, F.; Gruen, D.; Erben, T.; van Waerbeke, L.; Miller, L.; Finoguenov, A.; Kirkpatrick, C.; Henry, J. Patrick; Rykoff, E.; Rozo, E.; Dupke, R.; Kneib, J. -P.; Shan, H.; Spinelli, P. (2017)
    We present a stacked weak-lensing analysis of 27 richness selected galaxy clusters at 0.40
  • Wang, Tao; Elbaz, David; Daddi, Emanuele; Finoguenov, Alexis; Liu, Daizhong; Schreiber, Corentin; Martin, Sergio; Strazzullo, Veronica; Valentino, Francesco; van der Burg, Remco; Zanella, Anita; Ciesla, Laure; Gobat, Raphael; Le Brun, Amandine; Pannella, Maurilio; Sargent, Mark; Shu, Xinwen; Tan, Qinghua; Cappelluti, Nico; Li, Yanxia (2016)
    We report the discovery of a remarkable concentration of massive galaxies with extended X-ray emission at z(spec) = 2.506, which contains 11 massive (M-* greater than or similar to 10(11) M-circle dot) galaxies in the central 80 kpc region (11.6 sigma overdensity). We have spectroscopically confirmed 17 member galaxies with 11 from CO and the remaining ones from Ha. The X-ray luminosity, stellar mass content, and velocity dispersion all point to a collapsed, cluster-sized dark matter halo with mass M-200c = 10(13.9 +/- 0.2) M-circle dot, making it the most distant X-ray-detected cluster known to date. Unlike other clusters discovered so far, this structure is dominated by star-forming galaxies (SFGs) in the core with only 2 out of the 11 massive galaxies classified as quiescent. The star formation rate (SFR) in the 80 kpc core reaches similar to 3400 M-circle dot yr(-1) with a. gas depletion time of similar to 200 Myr, suggesting that we caught this cluster in rapid build-up of a dense core. The high SFR is driven by both a high abundance of SFGs and a higher starburst fraction (similar to 25%, compared to 3%-5% in the field). The presence of both a collapsed, cluster-sized halo and a predominant population of massive SFGs suggests that this structure could represent an important transition phase between protoclusters and mature clusters. It provides evidence that the main phase of massive galaxy passivization will take place after galaxies accrete onto the cluster, providing new insights into massive cluster formation at early epochs. The large integrated stellar mass at such high redshift challenges our understanding of massive cluster formation.
  • Crespo, N. Alvarez; Smolic, V.; Finoguenov, A.; Barrufet, L.; Aravena, M. (2021)
    Aims. Submillimetre galaxies (SMGs) are bright sources at submillimetre wavelengths (F-850 mu m>2-5 mJy). Made up of mostly of high-z galaxies (z>1), SMGs are amongst the most luminous dusty galaxies in the Universe. These galaxies are thought to be the progenitors of the massive elliptical galaxies in the local Universe and to reside in massive haloes at early epochs. Studying their environments and clustering strength is thus important to put these galaxies in a cosmological context.Methods. We present an environmental study of a sample of 116 SMGs in 96 ALMA observation fields, which were initially discovered with the AzTEC camera on ASTE and identified with high-resolution 1.25 mm ALMA imaging within the COSMOS survey field, having either spectroscopic or unambiguous photometric redshift. We analysed their environments making use of the latest release of the COSMOS photometric catalogue, COSMOS2015, a catalogue that contains precise photometric redshifts for more than half a million objects over the 2 deg(2) COSMOS field. We searched for dense galaxy environments computing the so-called overdensity parameter as a function of distance within a radius of 5 from the SMG. We validated this approach spectroscopically for those SMGs for which spectroscopic redshift is available. As an additional test, we searched for extended X-ray emission as a proxy for the hot intracluster medium, performing an X-ray stacking analysis in the 0.5-2 keV band with a 32 '' aperture and our SMG position using all available XMM-Newton and Chandra X-ray observations of the COSMOS field.Results. We find that 27% (31 out of 116) of the SMGs in our sample are located in a galactic dense environment; a fraction that is similar to previous studies. The spectroscopic redshift is known for 15 of these 31 sources, thus this photometric approach is tested using spectroscopy. We are able to confirm that 7 out of 15 SMGs lie in high-density peaks. However, the search for associated extended X-ray emission via an X-ray stacking analysis leads to a detection that is not statistically significant.
  • Hofmann, F.; Sanders, J. S.; Clerc, N.; Nandra, K.; Ridl, J.; Dennerl, K.; Ramos-Ceja, M.; Finoguenov, A.; Reiprich, T. H. (2017)
    Context. The eROSITA mission will provide the largest sample of galaxy clusters detected in X-ray to date (one hundred thousand expected). This sample will be used to constrain cosmological models by measuring cluster masses. An important mass proxy is the electron temperature of the hot plasma detected in X-rays. Aims. We want to understand the detection properties and possible bias in temperatures due to unresolved substructures in the cluster halos. Methods. We simulated a large number of galaxy cluster spectra with known temperature substructures and compared the results from analysing eROSITA simulated observations to earlier results from Chandra. Results. We were able to constrain a bias in cluster temperatures and its impact on cluster masses, as well as cosmological parameters derived from the survey. We found temperatures in the eROSITA survey to be biased low by about five per cent due to unresolved temperature substructures (compared to emission-weighted average temperatures from the Chandra maps). This bias would have a significant impact on the eROSITA cosmology constraints if not accounted for in the calibration. Conclusions. We isolated the bias effect that substructures in galaxy clusters have on temperature measurements and their impact on derived cosmological parameters in the eROSITA cluster survey.
  • Euclid Collaboration; Adam, R.; Kurki-Suonio, H. (2019)
    Galaxy cluster counts in bins of mass and redshift have been shown to be a competitive probe to test cosmological models. This method requires an efficient blind detection of clusters from surveys with a well-known selection function and robust mass estimates, which is particularly challenging at high redshift. The Euclid wide survey will cover 15 000 deg(2) of the sky, avoiding contamination by light from our Galaxy and our solar system in the optical and near-infrared bands, down to magnitude 24 in the H-band. The resulting data will make it possible to detect a large number of galaxy clusters spanning a wide-range of masses up to redshift similar to 2 and possibly higher. This paper presents the final results of the Euclid Cluster Finder Challenge (CFC), fourth in a series of similar challenges. The objective of these challenges was to select the cluster detection algorithms that best meet the requirements of the Euclid mission. The final CFC included six independent detection algorithms, based on different techniques, such as photometric redshift tomography, optimal filtering, hierarchical approach, wavelet and friend-of-friends algorithms. These algorithms were blindly applied to a mock galaxy catalog with representative Euclid-like properties. The relative performance of the algorithms was assessed by matching the resulting detections to known clusters in the simulations down to masses of M-200 similar to 10(13.25) M-circle dot. Several matching procedures were tested, thus making it possible to estimate the associated systematic effects on completeness to 80% completeness for a mean purity of 80% down to masses of 10(14) M-circle dot and up to redshift z = 2. Based on these results, two algorithms were selected to be implemented in the Euclid pipeline, the Adaptive Matched Identifier of Clustered Objects (AMICO) code, based on matched filtering, and the PZWav code, based on an adaptive wavelet approach.
  • Balogh, Michael L.; Mcgee, Sean L.; Mok, Angus; Muzzin, Adam; van der Burg, Remco F. J.; Bower, Richard G.; Finoguenov, Alexis; Hoekstra, Henk; Lidman, Chris; Mulchaey, John S.; Noble, Allison; Parker, Laura C.; Tanaka, Masayuki; Wilman, David J.; Webb, Tracy; Wilson, Gillian; Yee, Howard K. C. (2016)
    We present an analysis of galaxies in groups and clusters at 0.8 <z <1.2, from the GCLASS and GEEC2 spectroscopic surveys. We compute a 'conversion fraction' f(convert) that represents the fraction of galaxies that were prematurely quenched by their environment. For massive galaxies, M-star > 10(10.3) M-circle dot, we find f(convert) similar to 0.4 in the groups and similar to 0.6 in the clusters, similar to comparable measurements at z = 0. This means the time between first accretion into a more massive halo and final star formation quenching is t(p) similar to 2 Gyr. This is substantially longer than the estimated time required for a galaxy's star formation rate to become zero once it starts to decline, suggesting there is a long delay time during which little differential evolution occurs. In contrast with local observations we find evidence that this delay time-scale may depend on stellarmass, with t(p) approaching t(Hubble) for M-star similar to 10(9.5) M-circle dot. The result suggests that the delay time must not only be much shorter than it is today, but may also depend on stellar mass in a way that is not consistent with a simple evolution in proportion to the dynamical time. Instead, we find the data are well-matched by a model in which the decline in star formation is due to 'overconsumption', the exhaustion of a gas reservoir through star formation and expulsion via modest outflows in the absence of cosmological accretion. Dynamical gas removal processes, which are likely dominant in quenching newly accreted satellites today, may play only a secondary role at z = 1.
  • Furnell, Kate E.; Collins, Chris A.; Kelvin, Lee S.; Clerc, Nicolas; Baldry, Ivan K.; Finoguenov, Alexis; Erfanianfar, Ghazaleh; Comparat, Johan; Schneider, Donald P. (2018)
    We present a sample of 329 low-to intermediate-redshift (0.05 <z
  • Kalita, Boris S.; Daddi, Emanuele; Coogan, Rosemary T.; Delvecchio, Ivan; Gobat, Raphael; Valentino, Francesco; Strazzullo, Veronica; Tremou, Evangelia; Gomez-Guijarro, Carlos; Elbaz, David; Finoguenov, Alexis (2021)
    We report the detection of multiple faint radio sources, that we identify as active galactic nucleus (AGN) jets, within CLJ1449+0856 at z = 2 using 3 GHz Very Large Array observations. We study the effects of radio-jet-based kinetic feedback at high redshifts, which has been found to be crucial in low-redshift clusters to explain the observed thermodynamic properties of their intracluster medium (ICM). We investigate this interaction at an epoch featuring high levels of AGN activity and a transitional phase of ICM in regards to the likelihood of residual cold gas accretion. We measure a total flux of 30.6 +/- 3.3 mu Jy from the six detected jets. Their power contribution is estimated to be 1.2 (+/- 0.6) x 10(44) erg s(-1), although this value could be up to 4.7 x 10(44) erg s(-1). This is a factor of similar to 0.25-1.0 of the previously estimated instantaneous energy injection into the ICM of CLJ1449+0856 from AGN outflows and star formation that have already been found to be sufficient in globally offsetting the cooling flows in the cluster core. In line with the already detected abundance of star formation, this mode of feedback being distributed over multiple sites, contrary to a single central source observed at low redshifts, points to accretion of gas into the cluster centre. This also suggests a 'steady state' of the cluster featuring non-cool-core-like behaviour. Finally, we also examine the total infrared-radio luminosity ratio for the known sample of galaxies within the cluster core and find that dense environments do not have any serious consequence on the compliance of galaxies to the infrared-radio correlation.
  • Deshev, Boris; Finoguenov, Alexis; Verdugo, Miguel; Ziegler, Bodo; Park, Changbom; Hwang, Ho Seong; Haines, Christopher; Kamphuis, Peter; Tamm, Antti; Einasto, Maret; Hwang, Narae; Park, Byeong-Gon (2017)
    Aims. The mergers of galaxy clusters are the most energetic events in the Universe after the Big Bang. With the increased availability of multi-object spectroscopy and X-ray data, an ever increasing fraction of local clusters are recognised as exhibiting signs of recent or past merging events on various scales. Our goal is to probe how these mergers affect the evolution and content of their member galaxies. We specifically aim to answer the following questions: is the quenching of star formation in merging clusters enhanced when compared with relaxed clusters? Is the quenching preceded by a (short-lived) burst of star formation? Methods. We obtained optical spectroscopy of > 400 galaxies in the field of the merging cluster Abell 520. We combine these observations with archival data to obtain a comprehensive picture of the state of star formation in the members of this merging cluster. Finally, we compare these observations with a control sample of ten non-merging clusters at the same redshift from The Arizona Cluster Redshift Survey (ACReS). We split the member galaxies into passive, star forming or recently quenched depending on their spectra. Results. The core of the merger shows a decreased fraction of star forming galaxies compared to clusters in the non-merging sample. This region, dominated by passive galaxies, is extended along the axis of the merger. We find evidence of rapid quenching of the galaxies during the core passage with no signs of a star burst on the time scales of the merger (less than or similar to 0.4 Gyr). Additionally, we report the tentative discovery of an infalling group along the main filament feeding the merger, currently at similar to 2 : 5 Mpc from the merger centre. This group contains a high fraction of star forming galaxies as well as approximately two thirds of all the recently quenched galaxies in our survey.
  • Balogh, Michael L.; Gilbank, David G.; Muzzin, Adam; Rudnick, Gregory; Cooper, Michael C.; Lidman, Chris; Biviano, Andrea; Demarco, Ricardo; McGee, Sean L.; Nantais, Julie B.; Noble, Allison; Old, Lyndsay; Wilson, Gillian; Yee, Howard K. C.; Bellhouse, Callum; Cerulo, Pierluigi; Chan, Jeffrey; Pintos-Castro, Irene; Simpson, Rane; van der Burg, Remco F. J.; Zaritsky, Dennis; Ziparo, Felicia; Victoria Alonso, Maria; Bower, Richard G.; De Lucia, Gabriella; Finoguenov, Alexis; Garcia Lambas, Diego; Muriel, Hernan; Parker, Laura C.; Rettura, Alessandro; Valotto, Carlos; Wetzel, Andrew (2017)
    We describe a new Large Program in progress on the Gemini North and South telescopes: Gemini Observations of Galaxies in Rich Early Environments (GOGREEN). This is an imaging and deep spectroscopic survey of 21 galaxy systems at 1 <z <1.5, selected to span a factor > 10 in halo mass. The scientific objectives include measuring the role of environment in the evolution of low-mass galaxies, and measuring the dynamics and stellar contents of their host haloes. The targets are selected from the SpARCS, SPT, COSMOS, and SXDS surveys, to be the evolutionary counterparts of today's clusters and groups. The new red-sensitive Hamamatsu detectors on GMOS, coupled with the nod-and-shuffle sky subtraction, allow simultaneous wavelength coverage over lambda similar to 0.6-1.05 mu m, and this enables a homogeneous and statistically complete redshift survey of galaxies of all types. The spectroscopic sample targets galaxies with AB magnitudes z' <24.25 and [3.6] mu m <22.5, and is therefore statistically complete for stellar masses M* greater than or similar to 10(10.3) M-circle dot, for all galaxy types and over the entire redshift range. Deep, multiwavelength imaging has been acquired over larger fields for most systems, spanning u through K, in addition to deep IRAC imaging at 3.6 mu m. The spectroscopy is similar to 50 per cent complete as of semester 17A, and we anticipate a final sample of similar to 500 new cluster members. Combined with existing spectroscopy on the brighter galaxies from GCLASS, SPT, and other sources, GOGREEN will be a large legacy cluster and field galaxy sample at this redshift that spectroscopically covers a wide range in stellar mass, halo mass, and clustercentric radius.
  • Mpetha, C. T.; Collins, C. A.; Clerc, N.; Finoguenov, A.; Peacock, J. A.; Comparat, J.; Schneider, D.; Capasso, R.; Damsted, S.; Furnell, K.; Merloni, A.; Padilla, N. D.; Saro, A. (2021)
    Data from the SPectroscopic IDentification of ERosita Sources (SPIDERS) are searched for a detection of the gravitational redshifting of light from similar to 20 000 galaxies in similar to 2500 galaxy clusters using three definitions of the cluster centre: its Brightest Cluster Galaxy (BCG), the redMaPPer identified Central Galaxy (CG), or the peak of X-ray emission. Distributions of velocity offsets between galaxies and their host cluster's centre, found using observed redshifts, are created. The quantity (Delta) over cap, the average of the radial velocity difference between the cluster members and the cluster systemic velocity, reveals information on the size of a combination of effects on the observed redshift, dominated by gravitational redshifting. The change of (Delta) over cap with radial distance is predicted for SPIDERS galaxies in General Relativity (GR), and f(R) gravity, and compared to the observations. The values of (Delta) over cap = -13.5 +/- 4.7 kms(-1), (Delta) over cap = -12.5 +/- 5.1 kms(-1), and (Delta) over cap = -18.6 +/- 4.8 kms(-1) for the BCG, X-ray, and CG cases, respectively, broadly agree with the literature. There is no significant preference of one gravity theory over another, but all cases give a clear detection (>2.5 sigma) of (Delta) over cap. The BCG centroid is deemed to be the most robust method in this analysis, due to no well-defined central redshift when using an X-ray centroid, and CGs identified by redMaPPer with no associated spectroscopic redshift. For future gravitational redshift studies, an order-of-magnitude more galaxies, similar to 500 000, will be required - a possible feat with the forthcoming Vera C. Rubin Observatory, Euclid and eROSITA.
  • Bianconi, M.; Smith, G. P.; Haines, C. P.; McGee, S. L.; Finoguenov, A.; Egami, E. (2018)
    We report direct evidence of pre-processing of the galaxies residing in galaxy groups falling into galaxy clusters drawn from the Local Cluster Substructure Survey (LoCuSS). 34 groups have been identified via theirX-ray emission in the infall regions of 23 massive (<M-200 > = 10(15) M-circle dot) clusters at 0.15 <z <0.3. Highly complete spectroscopic coverage combined with 24 mu m imaging from Spitzer allows us to make a consistent and robust selection of cluster and group members including star-forming galaxies down to a stellar mass limit of M* = 2 x 10(10) M-circle dot. The fraction f(SF) of star-forming galaxies in infalling groups is lower and with a flatter trend with respect to clustercentric radius when compared to the rest of the cluster galaxy population. At R approximate to 1.3 r(200), the fraction of star-forming galaxies in infalling groups is half that in the cluster galaxy population. This is direct evidence that star-formation quenching is effective in galaxies already prior to them settling in the cluster potential, and that groups are favourable locations for this process.
  • Mulroy, Sarah L.; Farahi, Arya; Evrard, August E.; Smith, Graham P.; Finoguenov, Alexis; O'Donnell, Christine; Marrone, Daniel P.; Abdulla, Zubair; Bourdin, Herve; Carlstrom, John E.; Democles, Jessica; Haines, Chris P.; Martino, Rossella; Mazzotta, Pasquale; McGee, Sean L.; Okabe, Nobuhiro (2019)
    We present a simultaneous analysis of galaxy cluster scaling relations between weak-lensing mass and multiple cluster observables, across a wide range of wavelengths, that probe both gas and stellar content. Our new hierarchical Bayesian model simultaneously considers the selection variable alongside all other observables in order to explicitly model intrinsic property covariance and account for selection effects. We apply this method to a sample of 41 clusters at 0.15 <z <0.30, with a well-defined selection criteria based on RASS X-ray luminosity, and observations from Chandra/XMM, SZA, Planck, UKIRT, SUSS, and Subaru. These clusters have well-constrained weak-lensing mass measurements based on Subaru/SuprimeCam observations, which serve as the reference masses in our model. We present 30 scaling relation parameters for 10 properties. All relations probing the intracluster gas are slightly shallower than self-similar predictions, in moderate tension with prior measurements, and the stellar fraction decreases with mass. K-band luminosity has the lowest intrinsic scatter with a 95th percentile of 0.16, while the lowest scatter gas probe is gas mass with a fractional intrinsic scatter of 0.16 +/- 0.03. We find no distinction between the core-excised X-ray or high-resolution Sunyaev-Zel'dovich relations of clusters of different central entropy, but find with modest significance that higher entropy clusters have higher stellar fractions than their lower entropy counterparts. We also report posterior mass estimates from our likelihood model.
  • Haines, C. P.; Finoguenov, A.; Smith, G. P.; Babul, A.; Egami, E.; Mazzotta, P.; Okabe, N.; Pereira, M. J.; Bianconi, M.; Mcgee, S. L.; Ziparo, F.; Campusano, L. E.; Loyola, C. (2018)
    Galaxy clusters are expected to form hierarchically in a Lambda cold dark matter (Lambda CDM) universe, growing primarily through mergers with lower mass clusters and the continual accretion of group-mass haloes. Galaxy clusters assemble late, doubling their masses since z similar to 0.5, and so the outer regions of clusters should be replete with accreting group-mass systems. We present an XMM-Newton survey to search for X-ray groups in the infall regions of 23 massive galaxy clusters (<M-200 > similar to 10(15)M(circle dot)) at z similar to 0.2, identifying 39 X-ray groups that have been spectroscopically confirmed to lie at the cluster redshift. These groups have mass estimates in the range 2 x 10(13)-7 x 10(14)M(circle dot), and group-to-cluster mass ratios as low as 0.02. The comoving number density of X-ray groups in the infall regions is similar to 25x higher than that seen for isolated X-ray groups from the XXL survey. The average mass per cluster contained within these X-ray groups is 2.2 x 10(14)M(circle dot), or 19 +/- 5 per cent of the mass within the primary cluster itself. We estimate that similar to 10(15)M(circle dot) clusters increase their masses by 16 +/- 4 per cent between z = 0.223 and the present day due to the accretion of groups with M-200 >= 10(13.2)M(circle dot). This represents about half of the expected mass growth rate of clusters at these late epochs. The other half is likely to come from smooth accretion of matter not bound within haloes. The mass function of the infalling X-ray groups appears significantly top heavy with respect to that of 'field' X-ray systems, consistent with expectations from numerical simulations, and the basic consequences of collapsed massive dark matter haloes being biased tracers of the underlying large-scale density distribution.
  • Deshev, Boris; Haines, Christopher; Hwang, Ho Seong; Finoguenov, Alexis; Taylor, Rhys; Orlitova, Ivana; Einasto, Maret; Ziegler, Bodo (2020)
    Aims. We qualitatively assess and map the relative contribution of pre-processing and cluster related processes to the build-up of A963, a massive cluster at z=0.2 showing an unusually high fraction of star forming galaxies in its interior.Methods. We use Voronoi binning of positions of cluster members on the plane of the sky in order to map the 2D variations of galaxy properties in the centre and infall region of A963. We map four galaxy parameters (fraction of star forming galaxies, specific star formation rate, HI deficiency and age of the stellar population) based on full SED fitting, 21 cm imaging and optical spectroscopy.Results. We find an extended region dominated by passive galaxies along a north-south axis crossing the cluster centre, possibly associated with known filaments of the large-scale structure. There are signs that the passive galaxies in this region were quenched long before their arrival in the vicinity of the cluster. Contrary to that, to the east and west of the cluster centre lie regions of recent accretion dominated by gas rich, actively star forming galaxies not associated with any substructure or filament. The few passive galaxies in this region appear to be recently quenched, and some gas rich galaxies show signs of ongoing ram-pressure stripping. We report the first tentative observations at 21 cm of ongoing ram-pressure stripping at z=0.2, as well as observed inflow of low-entropy gas into the cluster along filaments of the large-scale structure.Conclusions. The observed galaxy content of A963 is a result of strongly anisotropic accretion of galaxies with different properties. Gas rich, star forming galaxies are being accreted from the east and west of the cluster and these galaxies are being quenched at r<R-200, likely by ram-pressure stripping. The bulk of the accretion onto the cluster, containing multiple groups, happens along the north-south axis and brings mostly passive galaxies, likely quenched before entering A963.