Browsing by Subject "galaxies: interactions"

Sort by: Order: Results:

Now showing items 1-11 of 11
  • Jaffe, Yara L.; Verheijen, Marc A. W.; Haines, Chris P.; Yoon, Hyein; Cybulski, Ryan; Montero-Castano, Maria; Smith, Rory; Chung, Aeree; Deshev, Boris Z.; Fernandez, Ximena; van Gorkom, Jacqueline; Poggianti, Bianca M.; Yun, Min S.; Finoguenov, Alexis; Smith, Graham P.; Okabe, Nobuhiro (2016)
    In a hierarchical Universe clusters grow via the accretion of galaxies from the field, groups and even other clusters. As this happens, galaxies can lose and/or consume their gas reservoirs via different mechanisms, eventually quenching their star formation. We explore the diverse environmental histories of galaxies through a multiwavelength study of the combined effect of ram-pressure stripping and group 'processing' in Abell 963, a massive growing cluster at z = 0.2 from the Blind Ultra Deep HI Environmental Survey (BUDHIES). We incorporate hundreds of new optical redshifts (giving a total of 566 cluster members), as well as Subaru and XMM-Newton data from LoCuSS, to identify substructures and evaluate galaxy morphology, star formation activity, and HI content (via HI deficiencies and stacking) out to 3 x R-200. We find that Abell 963 is being fed by at least seven groups, that contribute to the large number of passive galaxies outside the cluster core. More massive groups have a higher fraction of passive and HI-poor galaxies, while low-mass groups host younger (often interacting) galaxies. For cluster galaxies not associated with groups we corroborate our previous finding that HI gas (if any) is significantly stripped via ram-pressure during their first passage through the intracluster medium, and find mild evidence for a starburst associated with this event. In addition, we find an overabundance of morphologically peculiar and/or star-forming galaxies near the cluster core. We speculate that these arise from the effect of groups passing through the cluster (post-processing). Our study highlights the importance of environmental quenching and the complexity added by evolving environments.
  • Richter, P.; Winkel, B.; Wakker, B. P.; Pingel, N. M.; Fox, A. J.; Heald, G.; Walterbos, R. A. M.; Fechner, C.; Ben Bekhti, N.; Gentile, G.; Zschaechner, L. (2018)
    We present a detailed analysis of the absorption properties of one of the tidal gas streams around the "Whale" galaxy NGC 4631 in the direction of the quasar 2MASS J12421031+3214268. Our study is based on ultraviolet spectral data obtained with the Cosmic Origins Spectrograph (COS) on board the Hubble Space Telescope (HST) and 21cm-data from the HALOGAS project and the Green Bank Telescope (GBT). We detect strong H I Ly alpha absorption in the velocity range +550 to +800 km s(-1) related to gas from a NGC 4631 tidal stream known as Spur 2. We measure a column density of log (N(H I/cm(-2))) = 18.68 +/- 0.15, indicating that the quasar sightline traces the outer boundary of Spur 2 as seen in the 21 cm data. Metal absorption in Spur 2 is detected in the lines of O I, C II, Si II, and Si III in a complex absorption pattern that reflects the multiphase nature of the gas. We find that the average neutral gas fraction in Spur 2 toward 2MASS J12421031+3214268 is only 14%. This implies that ionized gas dominates the total mass of Spur 2, which then may comprise more than 10(9)M(circle dot). No significant depletion of Si is observed, showing that Spur 2 does not contain significant amounts of dust. From the measured O I/H I column density ratio, we determine an alpha abundance in Spur 2 of 0.131(-0.05)(+0.07) solar ([alpha/H] = -0.90 +/- 0.16), which is substantially lower than what is observed in the NGC 4631 disk. The low metallicity and low dust content suggest that Spur 2 represents metal-deficient gas stripped off a gas-rich satellite galaxy during a recent encounter with NGC 4631.
  • Zheng, Yirui; Wild, Vivienne; Lahen, Natalia; Johansson, Peter H.; Law, David; Weaver, John R.; Jimenez, Noelia (2020)
    Recent integral field spectroscopic (IFS) surveys have revealed radial gradients in the optical spectral indices of post-starburst (PSB) galaxies, which can be used to constrain their formation histories. We study the spectral indices of post-processed mock IFS datacubes of binary merger simulations, carefully matched to the properties of the MaNGA IFS survey, with a variety of black hole (BH) feedback models, progenitor galaxies, orbits, and mass ratios. Based on our simulation sample, we find that only major mergers on prograde-prograde or retrograde-prograde orbits in combination with a mechanical BH feedback model can form galaxies with weak enough ongoing star formation, and therefore absent H alpha emission, to be selected by traditional PSB selection methods. We find strong fluctuations in nebular emission line strengths, even within the PSB phase, suggesting that H alpha selected PSBs are only a subsample of the underlying population. The global PSB population can be more robustly identified using stellar continuum-based approaches. The difficulty in reproducing the very young PSBs in simulations potentially indicates that new sub-resolution star formation recipes are required to properly model the process of star formation quenching. In our simulations, we find that the starburst peaks at the same time at all radii, but is stronger and more prolonged in the inner regions. This results in a strong time evolution in the radial gradients of the spectral indices that can be used to estimate the age of the starburst without reliance on detailed star formation histories from spectral synthesis models.
  • Davis, Timothy A.; van de Voort, Freeke; Rowlands, Kate; McAlpine, Stuart; Wild, Vivienne; Crain, Robert A. (2019)
    Post-starburst galaxies arc typically considered to be a transition population, en route to the red sequence after a recent quenching event. Despite this, recent observations have shown that these objects typically have large reservoirs of cold molecular gas. In this paper we study the star-forming gas properties of a large sample of post-starburst galaxies selected from the cosmological, hydrodynamical EAGLE simulations. These objects resemble observed high-mass post-starburst galaxies both spectroscopically and in terms of their space density, stellar mass distribution, and sizes. We find that the vast majority of simulated post-starburst galaxies have significant gas reservoirs, with star-forming gas masses approximate to 10(9) M-circle dot, in good agreement with those seen in observational samples. The simulation reproduces the observed time evolution of the gas fraction of the post-starburst galaxy population, with the average galaxy losing approximate to 90 per cent of its star-forming interstellar medium in only approximate to 600 Myr. A variety of gas consumption/loss processes are responsible for this rapid evolution, including mergers and environmental effects, while active galactic nuclei play only a secondary role. The fast evolution in the gas fraction of post-starburst galaxies is accompanied by a clear decrease in the efficiency of star formation due to a decrease in the dense gas fraction. We predict that forthcoming ALMA observations of the gas reservoirs of low-redshift post-starburst galaxies will show that the molecular gas is typically compact and has disturbed kinematics, reflecting the disruptive nature of many of the evolutionary pathways that build up the post-starburst galaxy population.
  • McAlpine, Stuart; Harrison, Chris M.; Rosario, David J.; Alexander, David M.; Ellison, Sara L.; Johansson, Peter H.; Patton, David R. (2020)
    We investigate the connection between galaxy-galaxy mergers and enhanced black hole (BH) growth using the cosmological hydrodynamical EAGLE simulation. We do this via three methods of analysis, investigating: the merger fraction of AGN, the AGN fraction of merging systems, and the AGN fraction of galaxies with close companions. In each case, we find an increased abundance of AGN within merging systems relative to control samples of inactive or isolated galaxies (by up to a factor of approximate to 3 depending on the analysis method used), confirming that mergers are enhancing BH accretion rates for at least a subset of the galaxy population. The greatest excess of AGN triggered via a merger are found in lower mass (M-* similar to 10(10) M-circle dot) gas rich (f(gas) > 0.2) central galaxies with lower mass BHs (M-BH similar to 10(7) M-circle dot) at lower redshifts (z <1). We find no enhancement of AGN triggered via mergers in more massive galaxies (M-* greater than or similar to 10(11) M-circle dot). The enhancement of AGN is not uniform throughout the phases of a merger, and instead peaks within the early remnants of merging systems (typically lagging approximate to 300 Myr post-coalescence of the two galaxies at z = 0.5). We argue that neither major (M-*,M-1/M-*,M-2 = 1/4) nor minor mergers (1/10 <M-*,M-1/M-*,M-2 <1/4) are statistically relevant for enhancing BH masses globally. Whilst at all redshifts the galaxies experiencing a merger have accretion rates that are on average 2-3 times that of isolated galaxies, the majority of mass that is accreted on to BHs occurs outside the periods of a merger. We compute that on average no more than 15 per cent of a BHs final day mass comes from the enhanced accretion rates triggered via a merger.
  • Patton, David R.; Wilson, Kieran D.; Metrow, Colin J.; Ellison, Sara L.; Torrey, Paul; Brown, Westley; Hani, Maan H.; McAlpine, Stuart; Moreno, Jorge; Woo, Joanna (2020)
    We use the IllustrisTNG cosmological hydrodynamical simulations to investigate how the specific star formation rates (sSFRs) of massive galaxies (M-* > 10(10) M-circle dot) depend on the distance to their closest companions. We estimate sSFR enhancements by comparing with control samples that are matched in redshift, stellar mass, local density, and isolation, and we restrict our analysis to pairs with stellar mass ratios of 0.1 to 10. At small separations (similar to 15 kpc), the mean sSFR is enhanced by a factor of 2.0 +/- 0.1 in the flagship (110.7Mpc)(3) simulation (TNG100-1). Statistically significant enhancements extend out to 3D separations of 280 kpc in the (302.6Mpc)(3) simulation (TNG300-1). We find similar trends in the EAGLE and Illustris simulations, although their sSFR enhancements are lower than those in TNG100-1 by about a factor of two. Enhancements in IllustrisTNG galaxies are seen throughout the redshift range explored (0
  • Pawlik, M. M.; Wild, V.; Walcher, C. J.; Johansson, P. H.; Villforth, C.; Rowlands, K.; Mendez-Abreu, J.; Hewlett, T. (2016)
    We present a new morphological indicator designed for automated recognition of galaxies with faint asymmetric tidal features suggestive of an ongoing or past merger. We use the new indicator, together with pre-existing diagnostics of galaxy structure to study the role of galaxy mergers in inducing (post-) starburst spectral signatures in local galaxies, and investigate whether (post-) starburst galaxies play a role in the build-up of the 'red sequence'. Our morphological and structural analysis of an evolutionary sample of 335 (post-) starburst galaxies in the Sloan Digital Sky Survey DR7 with starburst ages 0 <t(SB) <0.6 Gyr, shows that 45 per cent of galaxies with young starbursts (t(SB) <0.1 Gyr) show signatures of an ongoing or past merger. This fraction declines with starburst age, and we find a good agreement between automated and visual classifications. The majority of the oldest (post-) starburst galaxies in our sample (t(SB) similar to 0.6 Gyr) have structural properties characteristic of early-type discs and are not as highly concentrated as the fully quenched galaxies commonly found on the 'red sequence' in the present day Universe. This suggests that, if (post-) starburst galaxies are a transition phase between active star-formation and quiescence, they do not attain the structure of presently quenched galaxies within the first 0.6 Gyr after the starburst.
  • Väisänen, Petri; Reunanen, Juha; Kotilainen, Jari; Mattila, Seppo; Johansson, Peter H.; Ramphul, Rajin; Romero-Canizales, Cristina; Kuncarayakti, Hanindyo (2017)
    We present new SINFONI near-infrared (NIR) integral field unit (IFU) spectroscopy and Southern African Large Telescope (SALT) optical long-slit spectroscopy characterizing the history of a nearby merging luminous infrared galaxy, dubbed the Bird (IRAS19115-2124). TheNIR line-ratio maps of the IFU data cubes and stellar population fitting of the SALT spectra now allow dating of the star formation (SF) over the triple system uncovered from our previous adaptive optics data. The distinct components separate clearly in line-ratio diagnostic diagrams, both thermal and non-thermal excitation is present. An off-nuclear starburst dominates the current SF of the Bird with 60-70 per cent of the total, with a 4-7 Myr age. The most massive nucleus, in contrast, is quenched with a starburst age of >40 Myr and shows hints of budding active galactic nucleus (AGN) activity. The secondary massive nucleus is at an intermediate stage. The two major components have signs of an older stellar population, consistent with a starburst triggered 1 Gyr ago in a first encounter. The simplest explanation of the history is that of a triple merger, where the strongly star-forming component has joined later. We detect multiple gas flows. The Bird offers an opportunity to witness multiple stages of galaxy evolution in the same system; triggering as well as very recent quenching of SF, and, perhaps, an early appearance of AGN activity. It also serves as a cautionary note on interpretations of observations with lower spatial resolution and/or without infrared data. At high redshift the system would look like a clumpy starburst with crucial pieces of its puzzle hidden in danger of misinterpretations.
  • Rawlings, Alexander (Helsingin yliopisto, 2021)
    This thesis presents the results from seventeen collisionless merger simulations of massive early-type galaxies in an effort to understand the coalescence of supermassive black holes (SMBHs) in the context of the Final Parsec Problem. A review of the properties of massive early-type galaxies and their SMBHs is presented alongside a discussion on SMBH binary coalescence to motivate the initial conditions used in the simulations. The effects of varying SMBH mass and stellar density profiles in the progenitor initial conditions on SMBH coalescence was investigated. Differing mass resolutions between the stellar particles and the SMBHs for each physical realisation were also tested. The simulations were performed on the supercomputers Puhti and Mahti at CSC, the Finnish IT Centre for Science. SMBH coalescence was found to only occur in mergers involving SMBH binaries of equal mass, with the most rapid coalescence observed in galaxies with a steep density profile. In particular, the eccentricity of the SMBH binary was observed to be crucial for coalescence: all simulations that coalesced displayed an orbital eccentricity in excess of e=0.7 for the majority of the time for which the binary was bound. Simulations of higher mass resolution were found to have an increased number of stellar particles able to positively interact with the SMBH binary to remove orbital energy and angular momentum, driving the binary to coalescence. The gravitational wave emission from an equal mass SMBH binary in the final stages before merging was calculated to be within the detection limits required for measurement by pulsar timing arrays. Mergers between galaxies of unequal mass SMBHs were unable to undergo coalescence irrespective of mass resolution or progenitor density profile, despite the binary in some of these simulations displaying a high orbital eccentricity. It was determined that the stellar particles interacting with the SMBH binary were unable to remove the required orbital energy and angular momentum to bring the SMBHs to within the separation required for efficient gravitational wave emission. A trend between increasing mass resolution and increasing number of stellar particles able to remove energy from the SMBH binary was observed across all the simulation suites. This observation is of paramount importance, as three-body interactions are essential in removing orbital energy and angular momentum from the SMBH binary, thus overcoming the Final Parsec Problem. As such, it is concluded that the Final Parsec Problem is a numerical artefact arising from insufficient mass resolution between the stellar particles and the SMBHs rather than a physical phenomenon.
  • Lahen, Natalia; Naab, Thorsten; Johansson, Peter H.; Elmegreen, Bruce; Hu, Chia-Yu; Walch, Stefanie (2019)
    We present a hydrodynamical simulation at sub-parsec and few-solar-mass resolution of a merger between two gas-rich dwarf galaxies. Our simulation includes a detailed model for the multi-phase interstellar medium and is able to follow the entire formation history of spatially resolved star clusters, including feedback from individual massive stars. Shortly after the merger we find a population of similar to 900 stellar clusters with masses above 10(2.5) M-circle dot and a cluster mass function (CMF), which is well fitted with a power law with a slope of alpha = -1.70 +/- 0.08. We describe here in detail the formation of the three most massive clusters (M-* greater than or similar to 10(5) M-circle dot), which populate the high-mass end of the CMF. The simulated clusters form rapidly on a timescale of 6-8 Myr in converging flows of dense gas. The embedded merger phase has extremely high star formation rate surface densities of Sigma(SFR) > 10 M-circle dot yr(-1) kpc(-2) and thermal gas pressures in excess of Pth similar to 10(7) K-B cm(-3))(-1). The formation process is terminated by rapid gas expulsion driven by the first generation of supernovae, after which the cluster centers relax and both their structure and kinematics become indistinguishable from observed local globular clusters (GCs). The simulation presented here provides a general model for the formation of metal-poor GCs in chemically unevolved starbursting environments of low-mass dwarf galaxies, which are common at high redshifts.
  • Pawlik, M. M.; Aldeen, L. Taj; Wild, V.; Mendez-Abreu, J.; Lahen, N.; Johansson, P. H.; Jimenez, N.; Lucas, W.; Zheng, Y.; Walcher, C. J.; Rowlands, K. (2018)
    Post-starburst galaxies can be identified via the presence of prominent Hydrogen Balmer absorption lines in their spectra. We present a comprehensive study of the origin of strong Balmer lines in a volume-limited sample of 189 galaxies with 0.01 <z <0.05, log(M-star/M-circle dot) > 9.5 and projected axial ratio b/a > 0.32. We explore their structural properties, environments, emission lines, and star formation histories, and compare them to control samples of star-forming and quiescent galaxies, and simulated galaxy mergers. Excluding contaminants, in which the strong Balmer lines are most likely caused by dust-star geometry, we find evidence for three different pathways through the post-starburst phase, with most events occurring in intermediate-density environments: (1) a significant disruptive event, such as a gas-rich major merger, causing a starburst and growth of a spheroidal component, followed by quenching of the star formation (70 per cent of post-starburst galaxies at 9.5 <log(M-star/M-circle dot) <10.5 and 60 per cent at log(M-star/M-circle dot) > 10.5); (2) at 9.5 <log(M-star/M-circle dot) <10.5, stochastic star formation in blue-sequence galaxies, causing a weak burst and subsequent return to the blue sequence (30 per cent); (3) at log(M-star/M-circle dot) > 10.5, cyclic evolution of quiescent galaxies which gradually move towards the high-mass end of the red sequence through weak starbursts, possibly as a result of a merger with a smaller gas-rich companion (40 per cent). Our analysis suggests that active galactic nuclei (AGNs) are 'on' for 50 per cent of the duration of the post-starburst phase, meaning that traditional samples of post-starburst galaxies with strict emission-line cuts will be at least 50 per cent incomplete due to the exclusion of narrow-line AGNs.