Browsing by Subject "grasping"

Sort by: Order: Results:

Now showing items 1-3 of 3
  • Hakala, Jussi; Häkkinen, Jukka (2022)
    This article presents a novel method for measuring contact points in human-object interaction. Research in multiple prehension-related fields, e.g., action planning, affordance, motor function, ergonomics, and robotic grasping, benefits from accurate and precise measurements of contact points between a subject's hands and objects. During interaction, the subject's hands occlude the contact points, which poses a major challenge for direct optical measurement methods. Our method solves the occlusion problem by exploiting thermal energy transfer from the subject's hand to the object surface during interaction. After the interaction, we measure the heat emitted by the object surface with four high-resolution infrared cameras surrounding the object. A computer-vision algorithm detects the areas in the infrared images where the subject's fingers have touched the object. A structured light 3D scanner produces a point cloud of the scene, which enables the localization of the object in relation to the infrared cameras. We then use the localization result to project the detected contact points from the infrared camera images to the surface of the 3D model of the object. Data collection with this method is fast, unobtrusive, contactless, markerless, and automated. The method enables accurate measurement of contact points in non-trivially complex objects. Furthermore, the method is extendable to measuring surface contact areas, or patches, instead of contact points. In this article, we present the method and sample grasp measurement results with publicly available objects.
  • Tiainen, Mikko; Lukavsky, Jiri; Tiippana, Kaisa; Vainio, Martti; Šimko, Juraj; Felisberti, Fatima; Vainio, Lari (2017)
    We have recently shown in Finnish speakers that articulation of certain vowels and consonants has a systematic influence on simultaneous grasp actions as well as on forward and backward hand movements. Here we studied whether these effects generalize to another language, namely Czech. We reasoned that if the results generalized to another language environment, it would suggest that the effects arise through other processes than language-dependent semantic associations. Rather, the effects would be likely to arise through language-independent interactions between processes that plan articulatory gestures and hand movements. Participants were presented with visual stimuli specifying articulations to be uttered (e.g., A or I), and they were required to produce a manual response concurrently with the articulation. In Experiment 1 they responded with a precision or a power grip, whereas in Experiment 2 they responded with a forward or a backward hand movement. The grip congruency effect was fully replicated: the consonant [k] and the vowel [alpha] were associated with power grip responses, while the consonant [t] and the vowel [i] were associated with precision grip responses. The forward/backward congruency effect was replicated with vowels [alpha], [o], which were associated with backward movement and with [ i], which was associated with forward movement, but not with consonants [k] and [ t]. These findings suggest that the congruency effects mostly reflect interaction between processes that plan articulatory gestures and hand movements with an exception that the forward/backward congruency effect might only work with vowel articulation.
  • Vainio, Lari; Vainio, Martti (2021)
    Recent evidence has shown linkages between actions and segmental elements of speech. For instance, close-front vowels are sound symbolically associated with the precision grip, and front vowels are associated with forward-directed limb movements. The current review article presents a variety of such sound-action effects and proposes that they compose a category of sound symbolism that is based on grounding a conceptual knowledge of a referent in articulatory and manual action representations. In addition, the article proposes that even some widely known sound symbolism phenomena such as the sound-magnitude symbolism can be partially based on similar sensorimotor grounding. It is also discussed that meaning of suprasegmental speech elements in many instances is similarly grounded in body actions. Sound symbolism, prosody, and body gestures might originate from the same embodied mechanisms that enable a vivid and iconic expression of a meaning of a referent to the recipient.