Browsing by Subject "homomorphic encryption"

Sort by: Order: Results:

Now showing items 1-2 of 2
  • Bahadori, Milad; Jarvinen, Kimmo (2020)
    A multitude of privacy-enhancing technologies (PETs) has been presented recently to solve the privacy problems of contemporary services utilizing cloud computing. Many of them are based on additively homomorphic encryption (AHE) that allows the computation of additions on encrypted data. The main technical obstacles for adaptation of PETs in practical systems are related to performance overheads compared with current privacy-violating alternatives. In this article, we present a hardware/software (HW/SW) codesign for programmable systems-on-chip (SoCs) that is designed for accelerating applications based on the Paillier encryption. Our implementation is a microcode-based multicore architecture that is suitable for accelerating various PETs using AHE with large integer modular arithmetic. We instantiate the implementation in a Xilinx Zynq-7000 programmable SoC and provide performance evaluations in real hardware. We also investigate its efficiency in a high-end Xilinx UltraScale+ programmable SoC. We evaluate the implementation with two target use cases that have relevance in PETs: privacy-preserving computation of squared Euclidean distances over encrypted data and multi-input functional encryption (FE) for inner products. Both of them represent the first hardware acceleration results for such operations, and in particular, the latter one is among the very first published implementation results of FE on any platform.
  • Roy, Sujoy Sinha; Turan, Furkan; Järvinen, Kimmo; Vercauteren, Frederik; Verbauwhede, Ingrid (IEEE, 2019)
    International Symposium on High-Performance Computer Architecture-Proceedings
    Homomorphic encryption is a tool that enables computation on encrypted data and thus has applications in privacy-preserving cloud computing. Though conceptually amazing, implementation of homomorphic encryption is very challenging and typically software implementations on general purpose computers are extremely slow. In this paper we present our year long effort to design a domain specific architecture in a heterogeneous Arm+FPGA platform to accelerate homomorphic computing on encrypted data. We design a custom co-processor for the computationally expensive operations of the well-known Fan-Vercauteren (FV) homomorphic encryption scheme on the FPGA, and make the Arm processor a server for executing different homomorphic applications in the cloud, using this FPGA-based co-processor. We use the most recent arithmetic and algorithmic optimization techniques and perform design-space exploration on different levels of the implementation hierarchy. In particular we apply circuit-level and block-level pipeline strategies to boost the clock frequency and increase the throughput respectively. To reduce computation latency, we use parallel processing at all levels. Starting from the highly optimized building blocks, we gradually build our multi-core multi-processor architecture for computing. We implemented and tested our optimized domain specific programmable architecture on a single Xilinx Zynq UltraScale+ MPSoC ZCU102 Evaluation Kit. At 200 MHz FPGA-clock, our implementation achieves over 13x speedup with respect to a highly optimized software implementation of the FV homomorphic encryption scheme on an Intel i5 processor running at 1.8 GHz.