Browsing by Subject "hordein"

Sort by: Order: Results:

Now showing items 1-3 of 3
  • Perkiö, Pasi (Helsingfors universitet, 2013)
    The aim of the literature review was to examine barley’s (Hordeum vulgare) alcohol-soluble proteins – hordeins and their technological attributes. Additionally, applicability of flow field flow fractionation (FFF) separation method as well as spectrophotometric and light scattering methods for protein characterization was under investigation. The objective of the experimental research was to determine a suitable extraction method for hordeins and subsequent analysis of their molecular weight distribution, size and conformation by the use of AF4 (asymmetric flow field flow fractionation) in combination with MALS-, UV- and RI-detectors. 40 % 1 propanol combined with mild sonication treatment proved to be the most efficient method to extract hordeins from barley flour. In order to prevent deterioration of the FFF channels the solvent had to be diluted to 20 %. Same dilution was used to measure hordeins’ extinction coefficient and to calculate ?n/?c theoretically. Berry plot was found to be the most suitable fit for the data analysis. Extracted hordeins were analysed with SDS PAGE. Extracts contained monomeric C, B and ? hordeins and polymeric B, D and ? hordeins. Also, small amounts of albumins, globulins and hydrolysed proteins were present. Extracts’ fractograms had five distinctive peaks. All of the peaks’ mass fractals and polydispersity indices were above 1, which means analysed aggregates were polydisperse and shaped as complex rods. This can be explained by 1 propanol influenced protein aggregation. Some inference in light scattering was identified in the MALS detector signal. This and the use of measured extinction coefficient and calculated index of refraction caused some errors in the data. The low sample yield (19–26 %) can be explained by the hordeins’ adhering to a syringe filter and adsorbing to the surface of AF4’s ultrafiltration membrane. Also, the use of over simplifying mathematical model to calculate the results and yield could cause some errors in the results. This study showed that it is possible to study Mw, size and conformation of polymeric hordeins with AF4 combined with MALS/UV-detectors and that hordeins form big aggregates in 20 % 1 propanol. For MALS proteins should be extracted in a solvent that will not interfere with subsequent analysis and proteins net charge, which creates a challenge to find proper solvent for hordeins. Nevertheless AF4 proved to be useful and delicate tool for characterizing cereal polymeric proteins.
  • Lius, Elina (Helsingin yliopisto, 2019)
    Finding new plant-based protein sources is important from a sustainable development perspective. Ethanol and starch production from barley results in fiber and protein side-stream fractions that are currently utilized for animal feed. Nonetheless, it would be more profitable if the barley protein side-stream was used as a human food ingredient. The main storage proteins in barley are known as hordeins. They are polymeric proteins and have low solubility, due to their inter-chain and inter-molecular disulfide bridges and hydrophobic side-chains. In food technology applications protein solubility is an important property for emulsifying and foaming functionality. Proteins are sensitive to the surrounding environment, especially to pH, which could be used to alter the solubility. In this thesis the literature review examined barley (Hordeum vulgare) proteins, especially the hordeins, functionality and effect on food materials. The review includes previous studies concerning cereal proteins functionality in general and their effect on food materials and a discussion on protein stabilized emulsions. The aim of the study was to determine the protein composition of two barley protein concentrates, OP1 and OP2, and to evaluate protein solubility and emulsifying properties. Furthermore, the aim of the study was to compare the functionality of the concentrates. According to SDS gel electrophoresis the protein concentrates consisted mostly of hordeins, especially C-hordein and some B-hordein. Minor amounts of other proteins where also identified. The protein solubility was determined by Lowry’s method. The proteins were more soluble in sodium phosphate buffer than in deionized water. In sodium phosphate buffer at pH 3,8 the solubility of OP1 proteins was 100 mg/g ± 11 mg/g and in deionized water at pH 3,9 the solubility was 45 mg/g ± 1,1 mg/g. The solubility of the OP2 proteins in sodium phosphate buffer at pH 3,8 was 47 mg/g ± 1,5 mg/g and in deionized water at pH 3,7 the solubility was 45 mg/g ± 1,1 mg/g. In both samples the proteins solubility increased as the pH increased. Most proteins were solubilized at pH 11: the solubility for OP1 and OP2 proteins were 240 mg/g ± 11 mg/g and 140 mg/g ± 12 mg/g respectively, which is problematic regarding food products, but could be used as a treatment to improve solubility. The smallest oil droplets were formed in emulsions were the pH was adjusted to 7 with sodium phosphate buffer. The stability of emulsions was however poor in all samples because of phase separation, which was already significant after one day of storage. The phase separation was considered to be flocculation which finally resulted in creaming or sedimentation. The flocculation may have occurred due to hydrophobic interactions between the proteins on the oil/water interface. However, shaking of the emulsion causes the flocculated oil droplets to separate, forming an even emulsion. No coalescence was observed in all samples, except for OP1-emulsions with 1 % (w/v) dry matter. These results confirm that these protein concentrates can be used in food products, especially in milk type drinks that need to be shaken before usage.
  • Huang, Xin; Kanerva, Paivi; Salovaara, Hannu; Stoddard, Frederick L.; Sontag-Strohm, Tuula (2017)
    The concentration of residual barley prolamin (hordein) in gluten-free products is overestimated by the R5 ELISA method when calibrated against the wheat gliadin standard. The reason for this may be that the composition of the gliadin standard is different from the composition of hordeins. This study showed that the recognition of whole hordein by R5 antibody mainly came from C-hordein, which is more reactive than the other hordeins. The proportion of C-hordein in total hordein ranged from 16 to 33% of common Finnish barley cultivars used in this study and was always higher than that of omega-gliadin, the homologous protein class in the gliadin standard, which may account for the overestimation. Thus, a hordein standard is needed for barley prolamin quantification instead of the gliadin standard. When gluten-free oat flour was spiked with barley flour, the prolamin concentration was overestimated 1.8-2.5 times with the gliadin standard, whereas estimates in the correct range were obtained when the standard was 40% C-hordein mixed with an inert protein. A preparative-scale method was developed to isolate and purify C-hordein, and C-hordein is proposed as a reference material to calibrate barley prolamin quantification in R5-based assays.