Browsing by Subject "hyperspectral imaging"

Sort by: Order: Results:

Now showing items 1-8 of 8
  • Neittaanmäki-Perttu, Noora; Gronroos, Mari; Jeskanen, Leila; Polonen, Ilkka; Ranki, Annamari; Saksela, Olli; Snellman, Erna (2015)
    Lentigo maligna (LM) is an in situ form of melanoma which can progress into invasive lentigo maligna melanoma (LMM). Variations in the pigmentation and thus visibility of the tumour make assessment of lesion borders challenging. We tested hyperspectral imaging system (HIS) in in vivo preoperative delineation of LM and LMM margins. We compared lesion margins delineated by HIS with those estimated clinically, and confirmed histologically. A total of 14 LMs and 5 LIVIMs in 19 patients were included. HIS analysis matched the histopathological analysis in 18/19 (94.7%) cases while in 1/19 (5.3%) cases HIS showed lesion extension not confirmed by histopathology (false positives). Compared to clinical examination, HIS defined lesion borders more accurately in 10/19 (52.6%) of cases (wider, n=7 or smaller, n=3) while in 8/19 (42.1%) cases lesion borders were the same as delineated clinically as confirmed histologically. Thus, HIS is useful for the detection of subclinical LM/LMM borders.
  • Viinikka, Arto; Hurskainen, Pekka; Keski-Saari, Sarita; Kivinen, Sonja; Tanhuanpää, Topi; Mäyrä, Janne; Poikolainen, Laura; Vihervaara, Petteri; Kumpula, Timo (MDPI, 2020)
    Remote Sensing 12 16 (2020)
    Sustainable forest management increasingly highlights the maintenance of biological diversity and requires up-to-date information on the occurrence and distribution of key ecological features in forest environments. European aspen (Populus tremula L.) is one key feature in boreal forests contributing significantly to the biological diversity of boreal forest landscapes. However, due to their sparse and scattered occurrence in northern Europe, the explicit spatial data on aspen remain scarce and incomprehensive, which hampers biodiversity management and conservation efforts. Our objective was to study tree-level discrimination of aspen from other common species in northern boreal forests using airborne high-resolution hyperspectral and airborne laser scanning (ALS) data. The study contained multiple spatial analyses: First, we assessed the role of different spectral wavelengths (455–2500 nm), principal component analysis, and vegetation indices (VI) in tree species classification using two machine learning classifiers—support vector machine (SVM) and random forest (RF). Second, we tested the effect of feature selection for best classification accuracy achievable and third, we identified the most important spectral features to discriminate aspen from the other common tree species. SVM outperformed the RF model, resulting in the highest overall accuracy (OA) of 84% and Kappa value (0.74). The used feature set affected SVM performance little, but for RF, principal component analysis was the best. The most important common VI for deciduous trees contained Conifer Index (CI), Cellulose Absorption Index (CAI), Plant Stress Index 3 (PSI3), and Vogelmann Index 1 (VOG1), whereas Green Ratio (GR), Red Edge Inflection Point (REIP), and Red Well Position (RWP) were specific for aspen. Normalized Difference Red Edge Index (NDRE) and Modified Normalized Difference Index (MND705) were important for coniferous trees. The most important wavelengths for discriminating aspen from other species included reflectance bands of red edge range (724–727 nm) and shortwave infrared (1520–1564 nm and 1684–1706 nm). The highest classification accuracy of 92% (F1-score) for aspen was achieved using the SVM model with mean reflectance values combined with VI, which provides a possibility to produce a spatially explicit map of aspen occurrence that can contribute to biodiversity management and conservation efforts in boreal forests.
  • Viinikka, Arto; Hurskainen, Pekka; Keski-Saari, Sarita; Kivinen, Sonja; Tanhuanpää, Topi; Mäyrä, Janne; Poikolainen, Laura; Vihervaara, Petteri; Kumpula, Timo (2020)
    Sustainable forest management increasingly highlights the maintenance of biological diversity and requires up-to-date information on the occurrence and distribution of key ecological features in forest environments. European aspen (Populus tremulaL.) is one key feature in boreal forests contributing significantly to the biological diversity of boreal forest landscapes. However, due to their sparse and scattered occurrence in northern Europe, the explicit spatial data on aspen remain scarce and incomprehensive, which hampers biodiversity management and conservation efforts. Our objective was to study tree-level discrimination of aspen from other common species in northern boreal forests using airborne high-resolution hyperspectral and airborne laser scanning (ALS) data. The study contained multiple spatial analyses: First, we assessed the role of different spectral wavelengths (455-2500 nm), principal component analysis, and vegetation indices (VI) in tree species classification using two machine learning classifiers-support vector machine (SVM) and random forest (RF). Second, we tested the effect of feature selection for best classification accuracy achievable and third, we identified the most important spectral features to discriminate aspen from the other common tree species. SVM outperformed the RF model, resulting in the highest overall accuracy (OA) of 84% and Kappa value (0.74). The used feature set affected SVM performance little, but for RF, principal component analysis was the best. The most important common VI for deciduous trees contained Conifer Index (CI), Cellulose Absorption Index (CAI), Plant Stress Index 3 (PSI3), and Vogelmann Index 1 (VOG1), whereas Green Ratio (GR), Red Edge Inflection Point (REIP), and Red Well Position (RWP) were specific for aspen. Normalized Difference Red Edge Index (NDRE) and Modified Normalized Difference Index (MND705) were important for coniferous trees. The most important wavelengths for discriminating aspen from other species included reflectance bands of red edge range (724-727 nm) and shortwave infrared (1520-1564 nm and 1684-1706 nm). The highest classification accuracy of 92% (F1-score) for aspen was achieved using the SVM model with mean reflectance values combined with VI, which provides a possibility to produce a spatially explicit map of aspen occurrence that can contribute to biodiversity management and conservation efforts in boreal forests.
  • Lindholm, Vivian; Raita-Hakola, Anna-Maria; Annala, Leevi; Salmivuori, Mari; Jeskanen, Leila; Saari, Heikki; Koskenmies, Sari; Pitkänen, Sari; Pölönen, Ilkka; Isoherranen, Kirsi; Ranki, Annamari (2022)
    Several optical imaging techniques have been developed to ease the burden of skin cancer disease on our health care system. Hyperspectral images can be used to identify biological tissues by their diffuse reflected spectra. In this second part of a three-phase pilot study, we used a novel hand-held SICSURFIS Spectral Imager with an adaptable field of view and target-wise selectable wavelength channels to provide detailed spectral and spatial data for lesions on complex surfaces. The hyperspectral images (33 wavelengths, 477-891 nm) provided photometric data through individually controlled illumination modules, enabling convolutional networks to utilise spectral, spatial, and skin-surface models for the analyses. In total, 42 lesions were studied: 7 melanomas, 13 pigmented and 7 intradermal nevi, 10 basal cell carcinomas, and 5 squamous cell carcinomas. All lesions were excised for histological analyses. A pixel-wise analysis provided map-like images and classified pigmented lesions with a sensitivity of 87% and a specificity of 93%, and 79% and 91%, respectively, for non-pigmented lesions. A majority voting analysis, which provided the most probable lesion diagnosis, diagnosed 41 of 42 lesions correctly. This pilot study indicates that our non-invasive hyperspectral imaging system, which involves shape and depth data analysed by convolutional neural networks, is feasible for differentiating between malignant and benign pigmented and non-pigmented skin tumours, even on complex skin surfaces.
  • Räsänen, Aleksi; Juutinen, Sari; Kalacska, Margaret; Aurela, Mika; Heikkinen, Pauli; Mäenpää, Kari; Rimali, Aleksi; Virtanen, Tarmo (2020)
    There is fine-scale spatial heterogeneity in key vegetation properties including leaf-area index (LAI) and biomass in treeless northern peatlands, and hyperspectral drone data with high spatial and spectral resolution could detect the spatial patterns with high accuracy. However, the advantage of hyperspectral drone data has not been tested in a multi-source remote sensing approach (i.e. inclusion of multiple different remote sensing datatypes); and overall, sub-meter-level leaf-area index (LAI) and biomass maps have largely been absent. We evaluated the detectability of LAI and biomass patterns at a northern boreal fen (Halssiaapa) in northern Finland with multi-temporal and multi-source remote sensing data and assessed the benefit of hyperspectral drone data. We measured vascular plant percentage cover and height as well as moss cover in 140 field plots and connected the structural information to measured aboveground vascular LAI and biomass and moss biomass with linear regressions. We predicted both total and plant functional type (PFT) specific LAI and biomass patterns with random forests regressions with predictors including RGB and hyperspectral drone (28 bands in a spectral range of 500-900 nm), aerial and satellite imagery as well as topography and vegetation height information derived from structure-from-motion drone photogrammetry and aerial lidar data. The modeling performance was between moderate and good for total LAI and biomass (mean explained variance between 49.8 and 66.5%) and variable for PFTs (0.3-61.6%). Hyperspectral data increased model performance in most of the regressions, usually relatively little, but in some of the regressions, the inclusion of hyperspectral data even decreased model performance (change in mean explained variance between -14.5 and 9.1%-points). The most important features in regressions included drone topography, vegetation height, hyperspectral and RGB features. The spatial patterns and landscape estimates of LAI and biomass were quite similar in regressions with or without hyperspectral data, in particular for moss and total biomass. The results suggest that the fine-scale spatial patterns of peatland LAI and biomass can be detected with multi-source remote sensing data, vegetation mapping should include both spectral and topographic predictors at sub-meter-level spatial resolution and that hyperspectral imagery gives only slight benefits.
  • Granlund, Lars; Vesakoski, Ville; Sallinen, Antti; Kolari, Tiina H. M.; Wolff, Franziska; Tahvanainen, Teemu (Springer Science and Business Media LLC, 2022)
    Ecosystems
    We investigated recent changes in spatial patterning of fen and bog zones in five boreal aapa mire complexes (mixed peatlands with patterned fen and bog parts) in a multiproxy study. Comparison of old (1940–1970s) and new aerial images revealed decrease of flarks (wet hollows) in patterned fens by 33–63% in middle boreal and 16–42% in northern boreal sites, as lawns of bog Sphagnum mosses expanded over fens. Peat core transects across transformed areas were used to verify the remote sensing inference with stratigraphic analyses of macrofossils, hyperspectral imaging, and age-depth profiles derived from 14C AMS dating and pine pollen density. The transect data revealed that the changes observed by remote sensing during past decades originated already from the end of the Little Ice Age (LIA) between 1700–1850 CE in bog zones and later in the flarks of fen zones. The average lateral expansion rate of bogs over fen zones was 0.77 m y−1 (range 0.19–1.66) as estimated by remote sensing, and 0.71 m y−1 (range 0.13–1.76) based on peat transects. The contemporary plant communities conformed to the macrofossil communities, and distinct vegetation zones were recognized as representing recently changed areas. The fen-bog transition increased the apparent carbon accumulation, but it can potentially threaten fen species and habitats. These observations indicate that rapid lateral bog expansion over aapa mires may be in progress, but more research is needed to reveal if ongoing fen-bog transitions are a commonplace phenomenon in northern mires.
  • Markiet, Vincent; Hernandez-Clemente, Rocio; Mõttus, Matti (2017)
    The photochemical reflectance index (PRI) is a proxy for light use efficiency (LUE), and is used in remote sensing to measure plant stress and photosynthetic downregulation in plant canopies. It is known to depend on local light conditions within a canopy indicating non-photosynthetic quenching of incident radiation. Additionally, when measured from a distance, canopy PRI depends on shadow fraction-the fraction of shaded foliage in the instantaneous field of view of the sensor-due to observation geometry. Our aim is to quantify the extent to which sunlit fraction alone can describe variations in PRI so that it would be possible to correct for its variation and identify other possible factors affecting the PRI-sunlit fraction relationship. We used a high spatial and spectral resolution Aisa Eagle airborne imaging spectrometer above a boreal Scots pine site in Finland (Hyytiala forest research station, 61 degrees 50'N, 24 degrees 17'E), with the sensor looking in nadir and tilted (off-nadir) directions. The spectral resolution of the data was 4.6 nm, and the spatial resolution was 0.6 m. We compared the PRI for three different scatter angles (beta = 19 degrees, 55 degrees and 76 degrees defined as the angle between sensor and solar directions) at the forest stand level, and observed a small (0.006) but statistically significant (p <0.01) difference in stand PRI. We found that stand mean PRI was not a direct function of sunlit fraction. However, for each scatter angle separately, we found a clear non-linear relationship between PRI and sunlit fraction. The relationship was systematic and had a similar shape for all of the scatter angles. As the PRI-sunlit fraction curves for the different scatter angles were shifted with respect to each other, no universal curve could be found causing the observed independence of canopy PRI from the average sunlit fraction of each view direction. We found the shifts of the curves to be related to a leaf structural effect on canopy scattering: the ratio of needle spectral reflectance to transmittance. We demonstrate that modeling PRI-sunlit fraction relationships using high spatial resolution imaging spectroscopy data is suitable and needed in order to quantify PRI variations over forest canopies.
  • Mäyrä, Janne; Keski-Saari, Sarita; Kivinen, Sonja; Tanhuanpää, Topi; Hurskainen, Pekka; Kullberg, Peter; Poikolainen, Laura; Viinikka, Arto; Tuominen, Sakari; Kumpula, Timo; Vihervaara, Petteri (2021)
    During the last two decades, forest monitoring and inventory systems have moved from field surveys to remote sensing-based methods. These methods tend to focus on economically significant components of forests, thus leaving out many factors vital for forest biodiversity, such as the occurrence of species with low economical but high ecological values. Airborne hyperspectral imagery has shown significant potential for tree species classification, but the most common analysis methods, such as random forest and support vector machines, require manual feature engineering in order to utilize both spatial and spectral features, whereas deep learning methods are able to extract these features from the raw data. Our research focused on the classification of the major tree species Scots pine, Norway spruce and birch, together with an ecologically valuable keystone species, European aspen, which has a sparse and scattered occurrence in boreal forests. We compared the performance of three-dimensional convolutional neural networks (3D-CNNs) with the support vector machine, random forest, gradient boosting machine and artificial neural network in individual tree species classification from hyperspectral data with high spatial and spectral resolution. We collected hyperspectral and LiDAR data along with extensive ground reference data measurements of tree species from the 83 km2 study area located in the southern boreal zone in Finland. A LiDAR-derived canopy height model was used to match ground reference data to aerial imagery. The best performing 3D-CNN, utilizing 4 m image patches, was able to achieve an F1-score of 0.91 for aspen, an overall F1-score of 0.86 and an overall accuracy of 87%, while the lowest performing 3D-CNN utilizing 10 m image patches achieved an F1-score of 0.83 and an accuracy of 85%. In comparison, the support-vector machine achieved an F1-score of 0.82 and an accuracy of 82.4% and the artificial neural network achieved an F1-score of 0.82 and an accuracy of 81.7%. Compared to the reference models, 3D-CNNs were more efficient in distinguishing coniferous species from each other, with a concurrent high accuracy for aspen classification. Deep neural networks, being black box models, hide the information about how they reach their decision. We used both occlusion and saliency maps to interpret our models. Finally, we used the best performing 3D-CNN to produce a wall-to-wall tree species map for the full study area that can later be used as a reference prediction in, for instance, tree species mapping from multispectral satellite images. The improved tree species classification demonstrated by our study can benefit both sustainable forestry and biodiversity conservation.