Browsing by Subject "iPSC"

Sort by: Order: Results:

Now showing items 1-11 of 11
  • Keskinen, Timo (Helsingin yliopisto, 2020)
    Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is an inherited autosomal dominant disease that leads to cognitive impairment, vascular dementia and ischemic strokes. In CADASIL, vascular smooth muscle cells (VSMCs) degrade gradually and are replaced by connective tissue in the small and mid-sized arteries in the brain. Extracellular granular osmiophilic material (GOM) that surround the VSMCs are a unique feature in CADASIL. The causal gene behind CADASIL is Notch3, which encodes a transmembrane protein with a signaling function. There are over 200 cysteine-altering mutations that cause CADASIL in Notch3. The potential pathology causing mechanism is still unclear, but most likely the mechanism is linked to the aggregation of GOM deposits that are potentially toxic to VSMCs. This thesis project aimed to correct CADASIL causing c.475C>T mutation in Notch3 in different CADASIL cell lines with different CRISPR base editor systems. Another aim was to create induced pluripotent stem cell (iPSC) lines from a CADASIL patient-derived skin biopsy sample to be used in the creation of an in vitro disease model for CADASIL. RNA-based ABEmax base editor system was used to correct immortalized- and primary- CADASIL cell lines. DNA-based ABEmax base editor system was used as a positive control. Simultaneous pluripotent reprogramming and pathogenic CADASIL mutation correction were done in the same transfection during this project. The editing efficiencies were evaluated by Sanger sequencing the genomic target region before and after the transfection. The editing efficiencies were good in general compared to literature. They ranged from 27 % to 73 % target base editing efficiency depending on the editing system-, guide-RNAs - and electroporation parameters used. Confirmed proximal off-target effects were not detected, and distal off-target effects were not evaluated.
  • Jalkanen, Nelli (Helsingin yliopisto, 2020)
    Mitochondrial aminoacyl tRNA-synthetases (mt-aaRS) catalyse the charging of tRNAs with their cognate amino acids in mitochondria. Mutations in mt-aaRS cause tissue-specific mitochondrial diseases, especially affecting tissues with high energy expenditure like the nervous system, heart, and kidneys. However, disease mechanisms for the heterogeneous group of diseases have not yet been fully elucidated. Harnessing CRISPR-Cas9 genome editing in induced pluripotent stem cells (iPSC) provides an opportunity to model mt-aaRS mutations in vitro and investigate the effects of individual mutations on cellular phenotype. SARS2 encodes mitochondrial seryl tRNA-synthetase, and its c.1347 G>A mutation causes severe childhood-onset progressive spastic paresis. Here, CRISPR-Cas9 ribonucleoprotein (RNP) complex and associated donor template were used to induce homology directed repair (HDR) the genome of iPSC and knock-in the patient mutation. Guide RNAs were designed and tested for efficiency before electroporation into wild type iPSC. Clonal cell lines were made by low-density seeding and manual colony picking. The expression of pluripotency markers was measured by RT-qPCR. RT-qPCR and Western blot measured SARS2 mRNA expression and protein level respectively. The success and precision of genome editing were analysed by Sanger sequencing, comparing the performance of the different guide RNAs, and screening regions of potential off-target genome editing. Two genome-edited iPSC lines with the SARS2 c.1347 G>A mutation were successfully generated to model the patient mutation. The iPSC lines expressed pluripotency markers and contained no off-target genome editing and modelled the patient’s decrease in SARS2 protein level and mRNA expression. More evidence of differentiation ability is needed before differentiation into the affected cell type (motor neurons) and further disease modelling. The efficiency of CRISPR-Cas9 for genome editing, especially harnessing HDR in iPSC, is an area of future research.
  • Sokka, Juho Joonas; Yoshihara, Masahito; Kvist, Jouni; Laiho, Laura; Warren, Andrew; Stadelmann, Christian; Jouhilahti, Eeva-Mari; Kilpinen, Helena; Balboa, Diego; Katayama, Shintaro; Kyttälä, Aija; Kere, Juha; Otonkoski, Timo; Weltner, Jere; Trokovic, Ras (2022)
    Conventional reprogramming methods rely on the ectopic expression of transcription factors to reprogram somatic cells into induced pluripotent stem cells (iPSCs). The forced expression of transcription factors may lead to off-target gene activation and heterogeneous reprogramming, resulting in the emergence of alternative cell types and aberrant iPSCs. Activation of endogenous pluripotency factors by CRISPR activation (CRISPRa) can reduce this heterogeneity. Here, we describe a high-efficiency reprogramming of human somatic cells into iPSCs using optimized CRISPRa. Efficient reprogramming was dependent on the additional targeting of the embryo genome activation-enriched Alu-motif and the miR-302/367 locus. Single-cell transcriptome analysis revealed that the optimized CRISPRa reprogrammed cells more directly and specifically into the pluripotent state when compared to the conventional reprogramming method. These findings support the use of CRISPRa for high-quality pluripotent reprogramming of human cells.
  • Pörsti, Elina (Helsingin yliopisto, 2018)
    The capability to generate human induced pluripotent stem cells (iPSC) from somatic cells provides remarkable possibilities for regenerative medicine. However, prior to clinical applications the process of reprogramming should be optimized and carefully characterized. The purpose of this study was to get insight in reprogramming of human somatic cells to pluripotency using CRISPR-dCas9 activator system (CRISPRa). CRISPRa is a RNA guided bacterial nuclease system that has been modified for gene expression control. The study had two subprojects. The aims of the first subproject were 1) to reprogram hNESCs to pluripotency with CRISPRa in 2D culture, 2) to determine the efficacy of reprogramming and 3) to study whether CRISPRa-mediated pluripotent reprogramming pathway involves a mesendoderm-resembling intermediate state. The aim of the second subproject was to explore the possibility of CRISPRa-mediated endogenous gene activation and reprogramming to pluripotency also in 3D cell cultures. I performed the reprogramming in 2D and 3D cell cultures by using a dCas9 activator to induce different combinations of endogenous pluripotency reprogramming factors OCT4 (octamer-binding transcription factor 4), SOX2 (Sex determining region Y-box 2), NANOG, c-MYC, KLF4 (Krüppel-like factor 4) and LIN28. I analysed the results of the reprogramming at protein level, using alkaline phosphatase staining and immunocytochemistry, and at mRNA level, using qRT-PCR. The 2D reprogramming served as a proof-of-principle for reprogramming with CRISPRa. This study shows, that CRISPRa can be used to reprogram human neural stem cells to iPSC with different combinations of pluripotency reprogramming factors or by inducing a single master-regulator gene, OCT4. In addition, the reprogramming process was very efficient. I did not detect mesendodermal intermediate state in CRISPRa-mediated reprogramming to pluripotency, in contrast to published results from transgene- and small molecules-based reprogramming studies. Thus, this result suggests that the pathway leading to pluripotency differs between CRISPRa-mediated reprogramming and the two other reprogramming methods. CRISPRa can be used to initiate reprogramming also in 3D cell culture. However, in 3D cell culture the cells were not fully reprogrammed. Based on these findings, I postulate that CRISPRa serves as an alternative method for generating human iPSC. In addition, CRISPRa can be further developed into a platform for direct reprogramming of organoids for in vitro disease modelling in 3D.
  • Brodski, Claude; Blaess, Sandra; Partanen, Juha; Prakash, Nilima (2019)
    Dopamine-synthesizing neurons located in the mammalian ventral midbrain are at the center stage of biomedical research due to their involvement in severe human neuropsychiatric and neurodegenerative disorders, most prominently Parkinson's Disease (PD). The induction of midbrain dopaminergic (mDA) neurons depends on two important signaling centers of the mammalian embryo: the ventral midline or floor plate (FP) of the neural tube, and the isthmic organizer (IsO) at the mid-/hindbrain boundary (MHB). Cells located within and close to the FP secrete sonic hedgehog (SHH), and members of the wingless-type MMTV integration site family (WNT1/5A), as well as bone morphogenetic protein (BMP) family. The IsO cells secrete WNT1 and the fibroblast growth factor 8 (FGF8). Accordingly, the FGF8, SHH, WNT, and BMP signaling pathways play crucial roles during the development of the mDA neurons in the mammalian embryo. Moreover, these morphogens are essential for the generation of stem cell-derived mDA neurons, which are critical for the modeling, drug screening, and cell replacement therapy of PD. This review summarizes our current knowledge about the functions and crosstalk of these signaling pathways in mammalian mDA neuron development in vivo and their applications in stem cell-based paradigms for the efficient derivation of these neurons in vitro.
  • Karmila, Nelli (Helsingin yliopisto, 2022)
    Schizophrenia is a debilitating psychiatric disorder associated with reduced life expectancy. The biological mechanism of schizophrenia is nebulous; however, many findings point to the central nervous system and neurons, where a reduction in dendritic spines has been indicated by previous research. The genetic findings support the involvement of synapses in the pathogenesis of schizophrenia. To study the biological properties stemming from genetics, relevant model systems and efficient methods are needed. Induced pluripotent stem cell (iPSC) technology offers a robust method for modeling the biological processes underlying schizophrenia. Somatic cells, e.g. fibroblasts, can be reprogrammed back to a pluripotent state resembling embryonic stem cells, and further differentiated into any cell type of the body, which might not be otherwise accessible. This allows establishing and characterizing neuronal cultures from patient and control cell lines, potentially revealing biological differences associated to the disease phenotype. The field of schizophrenia research has adopted iPSC technology and multiple studies have been conducted. These include assessments of synaptic density in the produced neuronal cultures, many of which reported decreased density associated with schizophrenia. In this thesis, a modified version of Nehme et al. (2018) protocol was used to differentiate iPSCs into neurons in co-cultures with human iPSC-derived astrocytes. The overarching aim was to construct an immunocytochemistry (ICC) -based assay to measure synaptic density in the produced co-cultures. First, suitable markers for characterization by ICC were tested and selected. The markers were selected to inform about neuronal identity, maturity, and synapses of the differentiated neurons. Next, the culturing conditions were optimized regarding the cell density and coating of the culturing wells. Finally, to estimate the utility of the assay, a pilot study was performed with three cell lines derived from a healthy control and a monozygotic twin pair discordant for schizophrenia. iPSCs from these cell lines were differentiated into neurons in co-cultures with astrocytes, and then characterized with ICC using selected markers and image analysis software. The synaptic density was quantified for each cell line. The performance of the assay was evaluated with analysis of variance (ANOVA) and restricted maximum likelihood model (RELM). An assay to quantify synaptic structures in mature neurons was established. The average synaptic density for all cell lines was approximately 1 synapse per 100μm of neurite. Analysis of the data produced with the assay revealed a notable batch effect and technical variation. This suggests that further optimization is needed to reduce variance from undesired sources. The pilot data suggests that the differences in synaptic density between cases and controls may be modest, further highlighting the need for minimizing noise in the assay to improve signal to noise ratio. However, indicated by power analysis, large sample sizes are needed to identify meaningful differences between cases and controls. In light of these results, more attention should be drawn to the methodology in the field of iPSC-based studies, as the principals of the assay constructed here were similar to other synaptic assays used in previous publications.
  • Karvonen, Eira; Krohn, Kai J. E.; Ranki, Annamari; Hau, Annika (2022)
    APECED (Autoimmune-Polyendocrinopathy-Candidiasis-Ectodermal-Dystrophy) is a severe and incurable multiorgan autoimmune disease caused by mutations in the AIRE (autoimmune regulator) gene. Without functional AIRE, the development of central and peripheral immune tolerance is severely impaired allowing the accumulation of autoreactive immune cells in the periphery. This leads to multiple endocrine and non-endocrine autoimmune disorders and mucocutaneous candidiasis in APECED patients. Recent studies have suggested that AIRE also has novel functions in stem cells and contributes to the regulatory network of pluripotency. In preparation of therapeutic gene correction, we generated and assessed patient blood cell-derived iPSCs, potentially suitable for cell therapy in APECED. Here, we describe APECED-patient derived iPSCs's properties, expression of AIRE as well as classical stem cell markers by qPCR and immunocytochemistry. We further generated self-aggregated EBs of the iPSCs. We show that APECED patient-derived iPSCs and EBs do not have any major proliferative or apoptotic defects and that they express all the classical pluripotency markers similarly to healthy person iPSCs. The results suggest that the common AIRE R257X truncation mutation does not affect stem cell properties and that APECED iPSCs can be propagated in vitro and used for subsequent gene-correction. This first study on APECED patient-derived iPSCs validates their pluripotency and confirms their ability for differentiation and potential therapeutic use.
  • Kiamehr, Mostafa; Viiri, Leena E.; Vihervaara, Terhi; Koistinen, Kaisa M.; Hilvo, Mika; Ekroos, Kim; Kakela, Reijo; Aalto-Setala, Katriina (2017)
    Hepatocyte-like cells (HLCs) differentiated from human induced pluripotent stem cells (iPSCs) offer an alternative model to primary human hepatocytes to study lipid aberrations. However, the detailed lipid profile of HLCs is yet unknown. In the current study, functional HLCs were differentiated from iPSCs generated from dermal fibroblasts of three individuals by a three-step protocol through the definitive endoderm (DE) stage. In parallel, detailed lipidomic analyses as well as gene expression profiling of a set of lipid-metabolism-related genes were performed during the entire differentiation process from iPSCs to HLCs. Additionally, fatty acid (FA) composition of the cell culture media at different stages was determined. Our results show that major alterations in the molecular species of lipids occurring during DE and early hepatic differentiation stages mainly mirror the quality and quantity of the FAs supplied in culture medium at each stage. Polyunsaturated phospholipids and sphingolipids with a very long FA were produced in the cells at a later stage of differentiation. This work uncovers the previously unknown lipid composition of iPSC-HLCs and its alterations during the differentiation in conjunction with the expression of key lipid-associated genes. Together with biochemical, functional and gene expression measurements, the lipidomic analyses allowed us to improve our understanding of the concerted influence of the exogenous metabolite supply and cellular biosynthesis essential for iPSC-HLC differentiation and function. Importantly, the study describes in detail a cell model that can be applied in exploring, for example, the lipid metabolism involved in the development of fatty liver disease or atherosclerosis.
  • Rolova, Taisia; Lehtonen, Sarka; Goldsteins, Gundars; Kettunen, Pinja; Koistinaho, Jari (2021)
    The research on neurodegenerative disorders has long focused on neuronal pathology and used transgenic mice as disease models. However, our understanding of the chronic neurodegenerative process in the human brain is still very limited. It is increasingly recognized that neuronal loss is not caused solely by intrinsic degenerative processes but rather via impaired interactions with surrounding glia and other brain cells. Dysfunctional astrocytes do not provide sufficient nutrients and antioxidants to the neurons, while dysfunctional microglia cannot efficiently clear pathogens and cell debris from extracellular space, thus resulting in chronic inflammatory processes in the brain. Importantly, human glia, especially the astrocytes, differ significantly in morphology and function from their mouse counterparts, and therefore more human-based disease models are needed. Recent advances in stem cell technology make it possible to reprogram human patients' somatic cells to induced pluripotent stem cells (iPSC) and differentiate them further into patient-specific glia and neurons, thus providing a virtually unlimited source of human brain cells. This review summarizes the recent studies using iPSC-derived glial models of Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis and discusses the applicability of these models to drug testing. This line of research has shown that targeting glial metabolism can improve the survival and function of cocultured neurons and thus provide a basis for future neuroprotective treatments.
  • Iacoviello, Francesco (Helsingin yliopisto, 2022)
    Neurodevelopmental disorders (NDDs) are disabilities in which the formation and development of the central nervous system is altered. NDDs severely impact the quality of life of the individuals that are affected by them, however little is known about the causes or the molecular mechanisms that are behind their onset. For this reason, being able to model them is pivotal to our society since, by understanding the mechanisms underlying such disorders, we could develop possible treatments. Previous research has suggested that disturbances in the early neuronal development could be at the basis of NDDs onset. Therefore, in this work, I have modeled neuronal differentiation in Kabuki syndrome (KS), a known NDD, assaying the expression of key early neurodevelopmental markers at four specific timepoints, using induced pluripotent stem cell (iPSC) technology. By concurrently differentiating three KS patient-derived and three control iPSC lines to neural precursor cells (NPCs) and profiling them with immunocytochemistry (ICC) and quantitative real-time PCR (RT-qPCR), I was able to identify differences in the early developmental trajectories of NPCs between the two conditions. The ICC data suggested that differentiating KS cell lines incur in precocious differentiation when compared to control cell lines, suggesting that the disease-causing mutations could lead to accelerated neuronal maturation of early NPCs. However, RT-qPCR analysis of the expression patterns of key neurogenesis markers was unable to statistically confirm the observed trend between the two phenotypes, likely due to limitations in statistical power. Despite this, the expression of four out of seven NPC markers was higher in early KS cells than in control cell lines, supporting the hypothesis of accelerated neuronal maturation. Taken together, this work highlighted some of the challenges related to iPSC-based disease modelling studies, and the need to further confirm the inferred mechanisms of asynchronous neuronal development observed in this work.
  • Konttinen, Henna; Cabral-da-Silva, Mauricio e Castro; Ohtonen, Sohvi; Wojciechowski, Sara; Shakirzyanova, Anastasia; Caligola, Simone; Giugno, Rosalba; Ishchenko, Yevheniia; Hernández, Damián; Fazaludeen, Mohammad Feroze; Eamen, Shaila; Budia, Mireia Gómez; Fagerlund, Ilkka; Scoyni, Flavia; Korhonen, Paula; Huber, Nadine; Haapasalo, Annakaisa; Hewitt, Alex W.; Vickers, James; Smith, Grady C.; Oksanen, Minna; Graff, Caroline; Kanninen, Katja M.; Lehtonen, Sarka; Propson, Nicholas; Schwartz, Michael P.; Pébay, Alice; Koistinaho, Jari; Ooi, Lezanne; Malm, Tarja (2019)
    Summary Here we elucidate the effect of Alzheimer disease (AD)-predisposing genetic backgrounds, APOE4, PSEN1ΔE9, and APPswe, on functionality of human microglia-like cells (iMGLs). We present a physiologically relevant high-yield protocol for producing iMGLs from induced pluripotent stem cells. Differentiation is directed with small molecules through primitive erythromyeloid progenitors to re-create microglial ontogeny from yolk sac. The iMGLs express microglial signature genes and respond to ADP with intracellular Ca2+ release distinguishing them from macrophages. Using 16 iPSC lines from healthy donors, AD patients and isogenic controls, we reveal that the APOE4 genotype has a profound impact on several aspects of microglial functionality, whereas PSEN1ΔE9 and APPswe mutations trigger minor alterations. The APOE4 genotype impairs phagocytosis, migration, and metabolic activity of iMGLs but exacerbates their cytokine secretion. This indicates that APOE4 iMGLs are fundamentally unable to mount normal microglial functionality in AD.