Browsing by Subject "image segmentation"

Sort by: Order: Results:

Now showing items 1-2 of 2
  • Hurskainen, Pekka; Adhikari, Hari; Siljander, Mika; Pellikka, Petri; Hemp, Andreas (2019)
    Classifying land use/land cover (LULC) with sufficient accuracy in heterogeneous landscapes is challenging using only satellite imagery. To improve classification accuracy inclusion of features from auxiliary geospatial datasets in classification models is applied since 1980s. However, the method is mostly limited to pixel-based classifications, and the coverage, accuracy and resolution of free and open-access auxiliary datasets have been poor until recent years. We evaluated how recent global coverage open-access geospatial datasets improve object-based LULC classification accuracy compared to using only spectral and texture features from satellite images. We applied feature sets topography, population, soil, canopy cover, distance to watercourses and spectral-temporal metrics from Landsat-8 time series on the southern foothills and savanna of Mt. Kilimanjaro, Tanzania, where the landscape is characterized by heterogeneous and fragmented mosaic of disturbed savanna vegetation, croplands, and settlements. The classification was based on image objects (groups of spectrally similar pixels) derived from segmentation of four Formosat-2 scenes with 8m spatial resolution using 1370 ground reference points for training, validation, and for defining 17 LULC classes. We built six Random Forest classification models with different sets of object features in each. The baseline model having only spectral and texture features was compared with five other models supplemented with auxiliary features. Inclusion of auxiliary features significantly improved classification overall accuracy (OA). The baseline model gave a median OA of 60.7%, but auxiliary features in other models increased median OA between 6.1 and 16.5 percentage points. The best OA was achieved with a model including all features of which elevation was the most important auxiliary feature followed by Enhanced Vegetation Index temporal range and slope degree. Applying object-based classification to geospatial information on topography, soil, settlement patterns and vegetation phenology, the discriminatory potential of challenging LULC classes can be significantly improved. We demonstrated this for the first time, and the technique shows good potential for improving LULC mapping across a multitude of fragmented landscapes worldwide.
  • Vesalainen, Ari (Helsingin yliopisto, 2022)
    Digitization has changed history research. The materials are available, and online archives make it easier to find the correct information and speed up the search for information. The remaining challenge is how to use modern digital methods to analyze the text of historical documents in more detail. This is an active research topic in digital humanities and computer science areas. Document layout analysis is where computer vision object detection methods can be applied to historical documents to identify the document pages’ present objects (i.e., page elements). The recent development in deep learning based computer vision provides excellent tools for this purpose. However, most reviewed systems focus on coarse-grained methods, where only the high-level page elements are detected (e.g., text, figures, tables). Fine-grained detection methods are required to be able to analyze texts on a more detailed level; for example, footnotes and marginalia are distinguished from the body text to enable proper analysis. The thesis studies how image segmentation techniques can be used for fine-grained OCR document layout analysis. How to implement fine-grained page segmentation and region classification systems in practice, and what are the accuracy and the main challenges of such a system? The thesis includes implementing a layout analysis model that uses the instance segmentation method (Mask R-CNN). This implementation is compared against another existing layout analysis using the semantic segmentation method (U-net based P2PaLA implementation).