Browsing by Subject "insects"

Sort by: Order: Results:

Now showing items 1-20 of 83
  • Lähteenmäki-Uutela, Anu; Rahikainen, Moona; Lonkila, Annika; Yang, Baoru (Butterworth Scientific, 2021)
    Food Control 130: 108336
    We ask how European food law impacts the transformative potential of alternative proteins, including single-cell proteins, plant-based novel proteins, cultured meat,macroalgae, and insects. The Novel Food Regulation may prove insurmountable for small companies, and it is demanding and time-consuming even for larger companies,dampening the transformative potential of all novel foods and traditional foods from third countries. Several microalgae and macroalgae are non-novel in the EU, which eases their way into the markets. The unclear novel food status of some potential green macroalgae species is a hindrance. All insects are novel, and none has EU-level authorization yet, although some Member States allow insect food. The GM Food Regulation is procedurally and scientifically demanding, and it forces GM labelling. The Regulation dampens the transformative potential of food GM technology. In addition to crops and fruit, GM Food Regulation applies to genetically modified or edited microbes,microalgae, cultured meat, and insects. The naming and labelling rules of plant-based products have caused controversy. From the business perspective, the health claims process is similarly challenging as the novel food process. EU food law must guarantee food safety and consumer rights while applying the principles of nondiscrimination and proportionality.
  • Ärje, Johanna; Melvad, Claus; Jeppesen, Mads Rosenhoj; Madsen, Sigurd Agerskov; Raitoharju, Jenni; Rasmussen, Maria Strandgård; Iosifidis, Alexandros; Tirronen, Ville; Gabbouj, Moncef; Meissner, Kristian; Hoye, Toke Thomas (British Ecological Society, 2020)
    Methods in Ecology and Evolution 11 8 (2020)
    1. Understanding how biological communities respond to environmental changes is a key challenge in ecology and ecosystem management. The apparent decline of insect populations necessitates more biomonitoring but the time-consuming sorting and expert-based identification of taxa pose strong limitations on how many insect samples can be processed. In turn, this affects the scale of efforts to map and monitor invertebrate diversity altogether. Given recent advances in computer vision, we propose to enhance the standard human expert-based identification approach involving manual sorting and identification with an automatic image-based technology. 2. We describe a robot-enabled image-based identification machine, which can automate the process of invertebrate sample sorting, specimen identification and biomass estimation. We use the imaging device to generate a comprehensive image database of terrestrial arthropod species which is then used to test classification accuracy, that is, how well the species identity of a specimen can be predicted from images taken by the machine. We also test sensitivity of the classification accuracy to the camera settings (aperture and exposure time) to move forward with the best possible image quality. We use state-of-the-art Resnet-50 and InceptionV3 convolutional neural networks for the classification task. 3. The results for the initial dataset are very promising as we achieved an average classification accuracy of 0.980. While classification accuracy is high for most species, it is lower for species represented by less than 50 specimens. We found significant positive relationships between mean area of specimens derived from images and their dry weight for three species of Diptera. 4. The system is general and can easily be used for other groups of invertebrates as well. As such, our results pave the way for generating more data on spatial and temporal variation in invertebrate abundance, diversity and biomass.
  • Lindholm, Tapio; Jakovlev, Jevgeni; Kravchenko, Alexey (Finnish Environment Institute, 2015)
    Reports of the Finnish Environment Institute 40/2014
    Zaonezhye Peninsula (Zaonezhsky Peninsula; Заонежский полуостров in Russian transcription) is situated on the northwestern coast of Lake Onega in the Republic of Karelia, Russia. The territory of Zaonezhye is unique in that it contains nearly every type of terrain and unconsolidated sediment known in the vast expanses of northwest Russia. It is also eastern part of Fennoscandian shield. It is characterized by a high diversity of basic limestone and carbonate rocks that determine the fertility of local soils as well as the unique diversity of habitats, flora and fauna. Numerous rare calciphile plant and lichen species are found here, as well as rich, eutrophic wetlands. Long-term farming and animal husbandry have led to a large number of grassland communities in the area. As a result, a mosaic structure of diverse habitats has evolved here. Europe’s second largest lake, Lake Onega, with its clear and deep waters also affect the local climate, making it milder. This report provides for the first time detailed species lists of vascular plants, bryophytes, lichens, wood-growing fungi and insects covering the entire Zaonezhye Peninsula, Kizhi archipelago and other adjacent islands. The most important sites for protection were observed, and six new nature monuments in the southern and southerneast parts of Zaonezhye Peninsula are recommended to be established. This publication contents following articles characterizing nature of Zaonezhye area: 1. Geology and physical geography: 1.1.Geological description, 1.2. Geomorphology and Quaternary deposits, 1.3. Hydrological characteristics, 1.4. Soil cover, 1.5. Palaeogeography, 1.6. Existing and planned protected areas; 2. Landscapes and ecosystems: 2.1. Modern landscapes of Zaonezhye, 2.2. Landscape structure, 2.3. Structure of the forest covered land and forest stands, 2.4. Forest structures, 2.5. Mires, 2.6. Meadows; 3. Flora and fauna: 3.1. Vascular plants, 3.2. Bryophyte flora, 3.3 Species list of lichens and allied fungi, 3.4. Red listed and indicator lichens, 3.5. Aphyllophoroid fungi and 3.6. Insect fauna. 3.7. Localities in Zaonezhye area used in species lists of vascular plants, bryophytes, lichens, fungi and insects, and their toponyms.
  • Milicic, Marija; Popov, Snezana; Vujic, Ante; Ivosevic, Bojana; Cardoso, Pedro (2020)
    1. Dark diversity represents the set of species that can potentially inhabit a given area under particular ecological conditions, but are currently 'missing' from a site. This concept allows characterisation of the mechanisms determining why species are sometimes absent from an area that seems ecologically suitable for them. 2. The aim of this study was to determine the dark diversity of hoverflies in south-eastern Europe and to discuss the role of different functional traits that might increase the likelihood of species contributing to dark diversity. Based on expert opinion, the Syrph the Net database and known occurrences of species, the study estimated species pools, and observed and dark diversities within each of 11 defined vegetation types for 564 hoverfly species registered in south-eastern Europe. To detect the most important functional traits contributing to species being in dark diversity across different vegetation types, a random forest algorithm and respective statistics for variable importance were used. 3. The highest dark diversity was found for southwest Balkan sub-Mediterranean mixed oak forest type, whereas the lowest was in Mediterranean mixed forest type. Three larval feeding modes (saproxylic, and phytophagous on bulbs or roots) were found to be most important for determining the probability of a species contributing to hoverfly dark diversity, based on univariate correlations and random forest analysis. 4. This study shows that studying dark diversity might provide important insights into what drives community assembly in south-eastern European hoverflies, especially its missing components, and contributes to more precise conservation prioritisation of both hoverfly species and their habitats.
  • de Jong, M. A.; Saastamoinen, Marjo (2018)
    Thermal tolerance has a major effect on individual fitness and species distributions and can be determined by genetic variation and phenotypic plasticity. We investigate the effects of developmental and adult thermal conditions on cold tolerance, measured as chill coma recovery (CCR) time, during the early and late adult stage in the Glanville fritillary butterfly. We also investigate the genetic basis of cold tolerance by associating CCR variation with polymorphisms in candidate genes that have a known role in insect physiology. Our results demonstrate that a cooler developmental temperature leads to reduced cold tolerance in the early adult stage, whereas cooler conditions during the adult stage lead to increased cold tolerance. This suggests that adult acclimation, but not developmental plasticity, of adult cold tolerance is adaptive. This could be explained by the ecological conditions the Glanville fritillary experiences in the field, where temperature during early summer, but not spring, is predictive of thermal conditions during the butterfly's flight season. In addition, an amino acid polymorphism (Ala-Glu) in the gene flightin, which has a known function in insect flight and locomotion, was associated with CCR. These amino acids have distinct biochemical properties and may thus affect protein function and/or structure. To our knowledge, our study is the first to link genetic variation in flightin to cold tolerance, or thermal adaptation in general.
  • Marquina, Daniel; Esparza-Salas, Rodrigo; Roslin, Tomas; Ronquist, Fredrik (2019)
    DNA metabarcoding allows the analysis of insect communities faster and more efficiently than ever before. However, metabarcoding can be conducted through several approaches, and the consistency of results across methods has rarely been studied. We compare the results obtained by DNA metabarcoding of the same communities using two different markers - COI and 16S - and three different sampling methods: (a) homogenized Malaise trap samples (homogenate), (b) preservative ethanol from the same samples, and (c) soil samples. Our results indicate that COI and 16S offer partly complementary information on Malaise trap samples, with each marker detecting a significant number of species not detected by the other. Different sampling methods offer highly divergent estimates of community composition. The community recovered from preservative ethanol of Malaise trap samples is significantly different from that recovered from homogenate. Small and weakly sclerotized insects tend to be overrepresented in ethanol while strong and large taxa are overrepresented in homogenate. For soil samples, highly degenerate COI primers pick up large amounts of nontarget DNA and only 16S provides adequate analyses of insect diversity. However, even with 16S, very little overlap in molecular operational taxonomic unit (MOTU) content was found between the trap and the soil samples. Our results demonstrate that none of the tested sampling approaches is satisfactory on its own. For instance, DNA extraction from preservative ethanol is not a valid replacement for destructive bulk extraction but a complement. In future metabarcoding studies, both should ideally be used together to achieve comprehensive representation of the target community.
  • Löyttyniemi, Kari (Suomen metsätieteellinen seura, 1983)
  • Milicic, Marija; Popov, Snežana; Jurca, Tamara; Cardoso, Pedro; Janković, Marina; Ačanski, Jelena; Vujić, Ante (2021)
    To better understand the relationship between biodiversity and ecosystem functioning, it is increasingly accepted that the focus of study needs to shift from taxonomic identity to the diversity of functional traits displayed by species within a community. Such an approach allows species to be grouped according to particular functional characteristics. Increasingly viewed as an extremely important group of model organisms, hoverflies have been the focus of a variety of ecological studies. Based on data regarding selected functional traits of hoverflies registered in Southeast Europe, the main aims of our study were to define hoverfly functional groups according to the similarity of these traits, as well as to compare the representation of delineated hoverfly functional groups among these vegetation types. We used fuzzy clustering to classify 568 SE European hoverfly species into five functional groups. The principle trait separating these functional groups was larval feeding type, followed by size of species range, flight ability, number of generations, inundation tolerance, and tolerance to human impact. For 9 of 11 vegetation types, the dominant functional group was characterized by species with good flight ability, having high human impact tolerance and more annual generations. The remaining two vegetation types, South-west Balkan sub-Mediterranean mixed oak forests and Mediterranean mixed forests, showed disparate dominance patterns, indicating that richness of functional groups is dependent on vegetation. Further investigation of whether and how established conservation measures enable recovery of the functional richness affected by habitat disturbance would help elucidate the importance of functional diversity in preserving biodiversity.
  • Löyttyniemi, Kari; Uusvaara, Olli (Suomen metsätieteellinen seura, 1986)
  • de Mendoza, Guillermo; Kaivosoja, Riikka; Grönroos, Mira; Hjort, Jan; Ilmonen, Jari; Kärnä, Olli-Matti; Paasivirta, Lauri; Tokola, Laura; Heino, Jani (2018)
    1. Metacommunity theory focuses on assembly patterns in ecological communities, originally exemplified through four different, yet non-exclusive, perspectives: patch dynamics, species sorting, source-sink dynamics, and neutral theory. More recently, three exclusive components have been proposed to describe a different metacommunity framework: habitat heterogeneity, species equivalence, and dispersal. Here, we aim at evaluating the insect metacommunity of a subarctic stream network under these two different frameworks. 2. We first modelled the presence/absence of 47 stream insects in northernmost Finland, using binomial generalised linear models (GLMs). The deviance explained by pure local environmental (E), spatial (S), and climatic variables (C) was then analysed across species using beta regression. In this comparative analysis, site occupancy, as well as taxonomic and biological trait vectors obtained from principal coordinate analysis, were used as predictor variables. 3. Single-species distributions were better explained by in-stream environmental and spatial factors than by climatic forcing, but in a highly variable fashion. This variability was difficult to relate to the taxonomic relatedness among species or their biological trait similarity. Site occupancy, however, was related to model performance of the binomial GLMs based on spatial effects: as populations are likely to be better connected for common species due to their near ubiquity, spatial factors may also explain better their distributions. 4. According to the classical four-perspective framework, the observation of both environmental and spatial effects suggests a role for either mass effects or species sorting constrained by dispersal limitation, or both. Taxonomic and biological traits, including the different dispersal capability of species, were scarcely important, which undermines the patch dynamics perspective, based on differences in dispersal ability between species. The highly variable performance of models makes the reliance on an entirely neutral framework unrealistic as well. According to the three-component framework, our results suggest that the stream insect metacommunity is shaped by the effect of habitat heterogeneity (supporting both species-sorting and mass effects), rather than species equivalence or dispersal limitation. 5. While the relative importance of the source-sink dynamics perspective or the species-sorting paradigm cannot be deciphered with the data at our disposal, we can conclude that habitat heterogeneity is an important driver shaping species distributions and insect assemblages in subarctic stream metacommunities. These results exemplify that the use of the three-component metacommunity framework may be more useful than the classical four perspective paradigm in analysing metacommunities. Our findings also provide support for conservation strategies based on the preservation of heterogeneous habitats in a metacommunity context.
  • Scherrer, Daniel; Mod, Heidi K.; Guisan, Antoine (2020)
    Stacked species distribution models (S-SDM) provide a tool to make spatial predictions about communities by first modelling individual species and then stacking the modelled predictions to form assemblages. The evaluation of the predictive performance is usually based on a comparison of the observed and predicted community properties (e.g. species richness, composition). However, the most available and widely used evaluation metrics require the thresholding of single species' predicted probabilities of occurrence to obtain binary outcomes (i.e. presence/absence). This binarization can introduce unnecessary bias and error. Herein, we present and demonstrate the use of several groups of new or rarely used evaluation approaches and metrics for both species richness and community composition that do not require thresholding but instead directly compare the predicted probabilities of occurrences of species to the presence/absence observations in the assemblages. Community AUC, which is based on traditional AUC, measures the ability of a model to differentiate between species presences or absences at a given site according to their predicted probabilities of occurrence. Summing the probabilities gives the expected species richness and allows the estimation of the probability that the observed species richness is not different from the expected species richness based on the species' probabilities of occurrence. The traditional Sorensen and Jaccard similarity indices (which are based on presences/absences) were adapted to maxSorensen and maxJaccard and to probSorensen and probJaccard (which use probabilities directly). A further approach (improvement over null models) compares the predictions based on S-SDMs with the expectations from the null models to estimate the improvement in both species richness and composition predictions. Additionally, all metrics can be described against the environmental conditions of sites (e.g. elevation) to highlight the abilities of models to detect the variation in the strength of the community assembly processes in different environments. These metrics offer an unbiased view of the performance of community predictions compared to metrics that requiring thresholding. As such, they allow more straightforward comparisons of model performance among studies (i.e. they are not influenced by any subjective thresholding decisions).
  • Kauppi, Katja; Rajala, Ari; Huusela, Erja; Kaseva, Janne; Ruuttunen, Pentti; Jalli, Heikki; Alakukku, Laura; Jalli, Marja (2021)
    The effect of weeds, plant diseases and insect pests on spring barley (Hordeum vulgare) and spring wheat (Triticum aestivum) grain and nutrient yield was examined. Long-term field trial data was used to assess the impact of different pests on grain yield. In the absence of pesticides, fungal diseases caused the largest annual yield-reduction in spring wheat and spring barley, 500 kg ha(-1) on average. Converting yield loss to nutrient yield loss this represented reductions of 8.1 and 9.2 kg ha(-1) in nitrogen and 1.5 and 1.6 kg ha(-1) in phosphorus, respectively. Likewise, it was estimated that weeds decrease the yield of spring barley and spring wheat for 200 kg ha(-1), which means reductions of 3.7 and 3.2 kg ha(-1) in nitrogen and 0.6 kg ha(-1) in phosphorus, respectively. For insect pests yield-reduction in spring barley and spring wheat varied between 418 and 745 kg ha(-1) respectively. However, because bird cherry-oat aphid (Rhopalosiphum padi L.) incidence data was limited, and aphids are highly variable annually, nutrient yield losses caused by insect pests were not included. Based on the current study, the management of weeds, plant diseases and insects maintain cereal crop yield and may thus decrease the environmental risks caused by unutilized nutrients.
  • Hohti, Riikka; MacLure, Maggie (2022)
    This article discusses the "more-than-human" turn in qualitative inquiry and education, engaging with the critiques presented by philosophers, animal studies scholars, and educational scholars toward the "too easy" adoption of an inclusive relational ontology. Based on Barad's concept of re-turning, the article develops a methodology of insect-thinking, which folds memories as well as scientific and "low theoretical" sources in and out the analysis to re-narrate child-animal encounters as entangled with place, time, class, poverty, displacement, imagination, and planetary futures. Insect-thinking produces irritations and interruptions to the human exceptionalism that underpins educational research and childhood studies. Based on conflicts, avoidance, and violence in child-insect relations, the authors discuss "cuts in relationality" and propose insect-thinking as means to approach more-than-human worlds as both shared and incommensurable.
  • Heino, Jani; Alahuhta, Janne (Royal Entomological Society / Wiley & Sons, 2019)
    Ecological Entomology 44: 413-424
    1. Ecogeographical rules refer to recurring patterns in nature, including the latitudinal diversity gradient (LDG), Rapoport's rule and Bergmann's rule, amongst others. In the present study, the existence of these rules was examined for diving beetles (Coleoptera: Dytiscidae), a family of aquatic predatory beetles. 2. Assemblage-level data were analysed for diving beetles, focusing on species richness, local contribution to beta diversity (LCBD), mean range size and mean body size across the biogeographical provinces of Northern Europe. First, each of these variables was correlated with latitude, and then variation in each variable was modelled using actual environmental variables in boosted regression tree analysis. 3. Species richness was found to decrease with latitude, LCBD increased with latitude, mean range size did not show a significant relationship with latitude, and mean body size decreased with latitude. The latter finding was in contrast to Bergmann's rule. The actual environmental variables best predicting variation in these four response variables varied among the models, although they generally included temperature-related and land use variables as the most influential ones. 4. The results obtained in the present study suggest that diving beetles conformed to the LDG, did not follow Rapoport's rule, and showed a reversed latitudinal gradient in the context of Bergmann's rule. In addition, species-poor provinces harboured ecologically most unique faunas, suggesting that species richness and LCBD are complementary measures of biodiversity. 5. Even though general support was not found for most of the ecogeographical rules examined, the findings of the present study are interesting because they suggest that aquatic ectothermic invertebrates may show patterns different from those originally described for terrestrial endothermic vertebrates.
  • Toivonen, Marjaana; Herzon, Irina; Toikkanen, Jenni; Kuussaari, Mikko (Enviroquest, 2021)
    Journal of Pollination Ecology 28, 153-166
    Uncultivated field margins are important refugia for pollinating insects in agricultural landscapes. However, the spill-over of pollination services from field margins to adjacent crops is poorly understood. This study (i) examined the effects of landscape heterogeneity on pollinator occurrence in permanent field margins and pollinator visitation to adjacent mass-flowering turnip rape (Brassica rapa ssp. oleifera) in boreal agricultural landscapes, and (ii) tested whether pollinator abundance and species richness in field margins predict abundance and species richness of crop visitors. Pollinators visiting the crop were more affected by landscape heterogeneity than pollinators in adjacent margins. Species richness, total abundance, and the abundance of syrphid flies visiting the crop increased with increasing landscape heterogeneity, whereas, in field margins, landscape heterogeneity had little effect on pollinators. In field-dominated homogeneous landscapes, wild pollinators rarely visited the crop even if they occurred in adjacent margins, whereas in heterogeneous landscapes, differences between the two habitats were smaller. Total pollinator abundance and species richness in field margins were poor predictors of pollinator visitation to adjacent crop. However, high abundances of honeybees and bumblebees in margins were related to high numbers of crop visitors from these taxa. Our results suggest that, while uncultivated field margins help pollinators persist in boreal agricultural landscapes, they do not always result in enhanced pollinator visitation to the adjacent crop. More studies quantifying pollination service delivery from semi-natural habitats to crops in different landscape settings will help develop management approaches to support crop pollination.
  • Lahti, Tuomas (Helsingfors universitet, 2014)
    The purpose of this master's thesis was to study environmental impacts of nature-based tourism on vegetation, insect communities, birds and soil nitrogen levels in Käsivarsi wilderness area in the Finnish Lapland. Tourism is the largest industry in the world and nature-based tourism is the fastest growing segment of it. Nature-based tourism takes place in areas that holds great nature values. These areas are often protected to preserve significant nature values from negative impacts of human activities. This controversy creates disharmony between nature tourism and nature conservation. Most popular nature tourism destinations in Finland are state owned national parks and wilderness areas. Wilderness areas are not within strict nature conservation. They are areas defined by law for preserving the typical character of the remaining wilderness areas, preserving native Saami culture and for preserving and developing recreational use of these areas. Studies have shown that nature-based tourism has caused changes by erosion and human disturbance to vegetation, mammals and birds. The key study question was to examine if there are changes in the soil nitrogen levels around huts used by hikers. I was also a point of interest to discover what kind of bird, insect and plant communities occur around these huts. Main interest was to see if there are changes in these communities on a gradient from high human impact areas around the huts to more pristine mountainous areas. The study was performed around five huts with three study lines, which had study points 15, 30, 60, 120, 240, 480 and 960 meters away from the hut. Birds were observed from the same lines but with 200 meter point counting intervals. It was also studied whether the abundance of graminoids was affected by the soil nitrogen levels and if soil nitrogen levels or the abundance of graminoids influenced changes in insect or bird communities. Results show that nature-based tourism has an impact on soil ammonium and nitrate levels. This impact was visible in increased nitrate and ammonium levels on a 30 meter radius area around the huts. The observed fauna and flora around the huts were typical for the mountainous region in the northern Finland. There were no observed invasive species. No species was discovered to have a negative impact from nature-based tourism. Abundance of graminoids increased near the huts whereas plant species richness and vegetation biomass did not. The insect community was more diverse and abundant near the huts. Especially Amara brunnea ground beetle and rove beetles showed a clear increase in numbers near the huts. Birds were also more abundant and species rich near the huts. Especially insect eating bird species as a group were more abundant close to the hut compared to the surrounding study areas. The increased level of ammonium in the soil correlated with the increased graminoid and insect abundances. The increased graminoid abundance correlated also with the observed insect abundance. The influence between nature-based tourism and the changes in soils nitrogen levels and in the insect communities were scientifically demonstrated for the first time in this study. This thesis provides a comprehensive view of the effects that nature-based tourism has in the northern Finnish nature. The generalization of the result was weakened by the fact that the study was conducted only around five different huts and that the studied plant and animal communities were relatively diverse between these huts. The results are still substantial for the nature tourism in Käsivarsi wilderness area. The results can be useful for developing nature tourism infrastructure for the plausible new national park in the area.
  • Heino, Jani; Alahuhta, Janne; Fattorini, Simone (Wiley & Sons, 2019)
    Journal of Biogeography 2019; 46: 2548– 2557
    Aim Ecogeographical patterns have been widely studied in endothermic vertebrates, but relatively few studies have simultaneously examined patterns and causes of gradients in species richness, range size and body size in ectothermic insects. We examined patterns in species richness, mean range size and mean body size of ground beetle assemblages across the biogeographical provinces of Northern Europe, a region that was mostly covered by ice sheets during the latest Ice Age and that presents strong contemporary climatic gradients. Location Northern Europe. Methods We used literature information on the occurrence of ground beetles, and analysed patterns in species richness, mean range size and mean body size across the provinces using generalized linear models and boosted regression tree (BRT) analysis. Results We found a strongly decreasing gradient in species richness with increasing latitude, a strongly unimodal range size-latitude relationship, and a weak unimodal body size-latitude relationship in entire ground beetle assemblages. These gradients also varied among four major genera, suggesting that the overall patterns result from the nuances of smaller clades of ground beetles. The relative importance of contemporary environmental drivers also varied between species richness, mean range size and mean body size in BRT analysis. While species richness increased with mean annual temperature, mean range size showed an opposite relationship. Mean body size was most clearly associated with the precipitation of the driest month. Main Conclusions Our findings showed that the latitudinal species richness gradient was strong, and it was closely related to concomitant variation in temperature, whereas variations in mean range size and mean body size were more complex. These findings suggest that the causes for range size and body size variation in insects may be complex, requiring additional insights from studies conducted at local, regional and continental scales.
  • Gray, Ross E. J.; Rodriguez, Luisa F.; Lewis, Owen T.; Chung, Arthur Y. C.; Ovaskainen, Otso; Slade, Eleanor M. (2022)
    ABSTRACT Fragmentation of tropical forests is increasing globally, with negative impacts for biodiversity. In Southeast Asia, expansion of oil palm agriculture has caused widespread deforestation, forest degradation, and fragmentation. Persistence of forest-dependent species within these fragmented landscapes is likely to depend on the capacity of individuals to move between forest patches. In oil palm landscapes, riparian buffers along streams and rivers are potential movement corridors, but their use by moving animals is poorly studied. We examined how six dung beetle species traversed riparian buffers connected to a continuous forest reserve area within an oil palm plantation in Sabah, Malaysian Borneo. We used a mark-release-recapture study and a new Bayesian Joint Species Movement Modelling (JSMM) approach, extended to a continuous capture process model. Dung beetle species were fairly generalist in their habitat use, but two species showed a statistically-supported preference for riparian buffer forest over oil palm, and one species showed a strong preference for forest reserve over riparian buffer, indicating the importance of forested areas within oil palm landscapes for some species. A land-use change simulation indicated that the loss of riparian buffers in oil palm will result in reduced movement by forest-dependent species. Synthesis and applications: Our results provide evidence for the use of riparian buffers in oil palm plantations for forest-dependent dung beetle species, strengthening the case for their retention, restoration, and re-establishment. Furthermore, our study demonstrates the wider applicability of the Joint Species Movement Modelling (JSMM) framework to assess movement behaviour of species in fragmented landscapes, a vital tool for future forest and landscape management and conservation prioritisation exercises.