Browsing by Subject "interplanetary"

Sort by: Order: Results:

Now showing items 1-2 of 2
  • Palmerio, E.; Kilpua, E. K. J.; James, A. W.; Green, L. M.; Pomoell, J.; Isavnin, A.; Valori, G. (2017)
    A key aim in space weather research is to be able to use remote-sensing observations of the solar atmosphere to extend the lead time of predicting the geoeffectiveness of a coronal mass ejection (CME). In order to achieve this, the magnetic structure of the CME as it leaves the Sun must be known. In this article we address this issue by developing a method to determine the intrinsic flux rope type of a CME solely from solar disk observations. We use several well-known proxies for the magnetic helicity sign, the axis orientation, and the axial magnetic field direction to predict the magnetic structure of the interplanetary flux rope. We present two case studies: the 2 June 2011 and the 14 June 2012 CMEs. Both of these events erupted from an active region, and despite having clear in situ counterparts, their eruption characteristics were relatively complex. The first event was associated with an active region filament that erupted in two stages, while for the other event the eruption originated from a relatively high coronal altitude and the source region did not feature a filament. Our magnetic helicity sign proxies include the analysis of magnetic tongues, soft X-ray and/or extreme-ultraviolet sigmoids, coronal arcade skew, filament emission and absorption threads, and filament rotation. Since the inclination of the posteruption arcades was not clear, we use the tilt of the polarity inversion line to determine the flux rope axis orientation and coronal dimmings to determine the flux rope footpoints, and therefore, the direction of the axial magnetic field. The comparison of the estimated intrinsic flux rope structure to in situ observations at the Lagrangian point L1 indicated a good agreement with the predictions. Our results highlight the flux rope type determination techniques that are particularly useful for active region eruptions, where most geoeffective CMEs originate.
  • Davies, Emma E.; Forsyth, Robert J.; Good, Simon W.; Kilpua, Emilia K. J. (2020)
    We present observations of the same magnetic cloud made near Earth by the Advance Composition Explorer (ACE), Wind, and the Acceleration, Reconnection, Turbulence and Electrodynamics of the Moon's Interaction with the Sun (ARTEMIS) mission comprising the Time History of Events and Macroscale Interactions during Substorms (THEMIS) B and THEMIS C spacecraft, and later by Juno at a distance of 1.2 AU. The spacecraft were close to radial alignment throughout the event, with a longitudinal separation of 3.6 degrees between Juno and the spacecraft near Earth. The magnetic cloud likely originated from a filament eruption on 22 October 2011 at 00:05 UT, and caused a strong geomagnetic storm at Earth commencing on 24 October. Observations of the magnetic cloud at each spacecraft have been analysed using minimum variance analysis and two flux rope fitting models, Lundquist and Gold-Hoyle, to give the orientation of the flux rope axis. We explore the effect different trailing edge boundaries have on the results of each analysis method, and find a clear difference between the orientations of the flux rope axis at the near-Earth spacecraft and Juno, independent of the analysis method. The axial magnetic field strength and the radial width of the flux rope are calculated using both observations and fitting parameters and their relationship with heliocentric distance is investigated. Differences in results between the near-Earth spacecraft and Juno are attributed not only to the radial separation, but to the small longitudinal separation which resulted in a surprisingly large difference in the in situ observations between the spacecraft. This case study demonstrates the utility of Juno cruise data as a new opportunity to study magnetic clouds beyond 1 AU, and the need for caution in future radial alignment studies.