Browsing by Subject "klorofylli"

Sort by: Order: Results:

Now showing items 1-13 of 13
  • Kotamäki, Niina; Järvinen, Marko; Kauppila, Pirkko; Korpinen, Samuli; Lensu, Anssi; Malve, Olli; Mitikka, Sari; Silander, Jari; Kettunen, Juhani (Springer, 2019)
    Environmental Monitoring Assessment 191, 318 (2019)
    The representativeness of aquatic ecosystem monitoring and the precision of the assessment results are of high importance when implementing the EU’s Water Framework Directive that aims to secure a good status of waterbodies in Europe. However, adapting monitoring designs to answer the objectives and allocating the sampling resources effectively are seldom practiced. Here, we present a practical solution how the sampling effort could be re-allocated without decreasing the precision and confidence of status class assignment. For demonstrating this, we used a large data set of 272 intensively monitored Finnish lake, coastal, and river waterbodies utilizing an existing framework for quantifying the uncertainties in the status class estimation. We estimated the temporal and spatial variance components, as well as the effect of sampling allocation to the precision and confidence of chlorophyll-a and total phosphorus. Our results suggest that almost 70% of the lake and coastal waterbodies, and 27% of the river waterbodies, were classified without sufficient confidence in these variables. On the other hand, many of the waterbodies produced unnecessary precise metric means. Thus, reallocation of sampling effort is needed. Our results show that, even though the studied variables are among the most monitored status metrics, the unexplained variation is still high. Combining multiple data sets and using fixed covariates would improve the modeling performance. Our study highlights that ongoing monitoring programs should be evaluated more systematically, and the information from the statistical uncertainty analysis should be brought concretely to the decision-making process.
  • Viinikka, Arto; Hurskainen, Pekka; Keski-Saari, Sarita; Kivinen, Sonja; Tanhuanpää, Topi; Mäyrä, Janne; Poikolainen, Laura; Vihervaara, Petteri; Kumpula, Timo (MDPI, 2020)
    Remote Sensing 12 16 (2020)
    Sustainable forest management increasingly highlights the maintenance of biological diversity and requires up-to-date information on the occurrence and distribution of key ecological features in forest environments. European aspen (Populus tremula L.) is one key feature in boreal forests contributing significantly to the biological diversity of boreal forest landscapes. However, due to their sparse and scattered occurrence in northern Europe, the explicit spatial data on aspen remain scarce and incomprehensive, which hampers biodiversity management and conservation efforts. Our objective was to study tree-level discrimination of aspen from other common species in northern boreal forests using airborne high-resolution hyperspectral and airborne laser scanning (ALS) data. The study contained multiple spatial analyses: First, we assessed the role of different spectral wavelengths (455–2500 nm), principal component analysis, and vegetation indices (VI) in tree species classification using two machine learning classifiers—support vector machine (SVM) and random forest (RF). Second, we tested the effect of feature selection for best classification accuracy achievable and third, we identified the most important spectral features to discriminate aspen from the other common tree species. SVM outperformed the RF model, resulting in the highest overall accuracy (OA) of 84% and Kappa value (0.74). The used feature set affected SVM performance little, but for RF, principal component analysis was the best. The most important common VI for deciduous trees contained Conifer Index (CI), Cellulose Absorption Index (CAI), Plant Stress Index 3 (PSI3), and Vogelmann Index 1 (VOG1), whereas Green Ratio (GR), Red Edge Inflection Point (REIP), and Red Well Position (RWP) were specific for aspen. Normalized Difference Red Edge Index (NDRE) and Modified Normalized Difference Index (MND705) were important for coniferous trees. The most important wavelengths for discriminating aspen from other species included reflectance bands of red edge range (724–727 nm) and shortwave infrared (1520–1564 nm and 1684–1706 nm). The highest classification accuracy of 92% (F1-score) for aspen was achieved using the SVM model with mean reflectance values combined with VI, which provides a possibility to produce a spatially explicit map of aspen occurrence that can contribute to biodiversity management and conservation efforts in boreal forests.
  • Seppälä, Jukka (Finnish Environment Institute, 2009)
    Monographs of the Boreal Environment Research 34
    To obtain data on phytoplankton dynamics (abundance, taxonomy, productivity, and physiology) with improved spatial and temporal resolution, and at reduced cost, traditional phytoplankton monitoring methods have been supplemented with optical approaches. Fluorescence detection of living phytoplankton is very sensitive and not disturbed much by the other optically active components. Fluorescence results are easy to generate, but interpretation of measurements is not straightforward as phytoplankton fluorescence is determined by light absorption, light reabsorption, and quantum yield of fluorescence - all of which are affected by the physiological state of the cells. In this thesis, I have explored various fluorescence-based techniques for detection of phytoplankton abundance, taxonomy and physiology in the Baltic Sea.In algal cultures used in this thesis, the availability of nitrogen and light conditions caused changes in pigmentation, and consequently in light absorption and fluorescence properties of cells. The variation of absorption and fluorescence properties of natural phytoplankton populations in the Baltic Sea was more complex. Physical environmental factors (e.g. mixing depth, irradiance and temperature) and related seasonal succession in the phytoplankton community explained a large part of the seasonal variability in the magnitude and shape of Chlorophyll a (Chla)-specific absorption. Subsequent variations in the variables affecting fluorescence were large; 2.4-fold for light reabsorption at the red Chla peak and 7-fold for the spectrally averaged Chla-specific absorption coefficient for Photosystem II. In the studies included in this thesis, Chla-specific fluorescence varied 2-10 fold. This variability in Chla-specific fluorescence was related to the abundance of cyanobacteria, the size structure of the phytoplankton community, and absorption characteristics of phytoplankton.Cyanobacteria show very low Chla-specific fluorescence. In the presence of eukaryotic species, Chla fluorescence describes poorly cyanobacteria. During cyanobacterial bloom in the Baltic Sea, phycocyanin fluorescence explained large part of the variability in Chla concentrations. Thus, both Chla and phycocyanin fluorescence were required to predict Chla concentration.Phycobilins are major light harvesting pigments for cyanobacteria. In the open Baltic Sea, small picoplanktonic cyanobacteria were the main source of phycoerythrin fluorescence and absorption signal. Large filamentous cyanobacteria, forming harmful blooms, were the main source of the phycocyanin fluorescence signal and typically their biomass and phycocyanin fluorescence were linearly related. It was shown that for reliable phycocyanin detection, instrument wavebands must match the actual phycocyanin fluorescence peak well. In order to initiate an operational ship-of-opportunity monitoring of cyanobacterial blooms in the Baltic Sea, the distribution of filamentous cyanobacteria was followed in 2005 using phycocyanin fluorescence.Various taxonomic phytoplankton pigment groups can be separated by spectral fluorescence. I compared multivariate calibration methods for the retrieval of phytoplankton biomass in different taxonomic groups. During a mesocosm experiment, a partial least squares regression method gave the closest predictions for all taxonomic groups, and the accuracy was adequate for phytoplankton bloom detection. This method was noted applicable especially in the cases when not all of the optically active compounds are known.Variable fluorescence has been proposed as a tool to study the physiological state of phytoplankton. My results from the Baltic Sea emphasize that variable fluorescence alone cannot be used to detect nutrient limitation of phytoplankton. However, when combined with experiments with active nutrient manipulation, and other nutrient limitation indices, variable fluorescence provided valuable information on the physiological responses of the phytoplankton community. This thesis found a severe limitation of a commercial fast repetition rate fluorometer, which couldn’t detect the variable fluorescence of phycoerythrin-lacking cyanobacteria. For these species, the Photosystem II absorption of blue light is very low, and fluorometer excitation light did not saturate Photosystem II during a measurement.This thesis encourages the use of various in vivo fluorescence methods for the detection of bulk phytoplankton biomass, biomass of cyanobacteria, chemotaxonomy of phytoplankton community, and phytoplankton physiology. Fluorescence methods can support traditional phytoplankton monitoring by providing continuous measurements of phytoplankton, and thereby strengthen the understanding of the links between biological, chemical and physical processes in aquatic ecosystems.
  • Goncalves-Araujo, Rafael; Roettgers, Ruediger; Haraguchi, Lumi; Brandini, Frederico Pereira (Frontiers Media S.A., 2019)
    Frontiers in Marine Science 6: 716
    The South Brazilian Bight (SBB) is a hydrographically dynamic environment with strong seasonality that sustains a diverse planktonic community involved in diverse biogeochemical processes. The inherent optical properties (IOPs; e.g., absorption and scattering coefficients) of optically actives constituents of water (OACs; phytoplankton, non-algal particles–NAP, and colored dissolved organic matter–CDOM) have been widely employed to retrieve information on biogeochemical parameters in the water. In this study conducted in the SBB, a cross-shelf transect was performed for biogeochemistry and hydrographic sampling during a summer expedition. Our research aimed to determine the distribution and amount of the OACs based on their spectral signature, in relation to the distribution of water masses in the region. That allows us to get insights into the biogeochemical processes within each water mass and in the boundaries between them. We observed a strong intrusion of South Atlantic Central Water (SACW) over the shelf, mainly driven by the wind action. With that, phytoplankton development was fueled by the input of nutrients, and increased chlorophyll-a (Chl-a) concentrations were observed within the shallowest stations. Colored dissolved organic matter did not follow the distribution of dissolved organic carbon (DOC). Both CDOM and DOC presented high values at the low salinity Coastal Water (CW), as an indication of the continental influence over the shelf. However, CDOM was inversely correlated with salinity and lowest values were observed within Tropical Water (TW), whereas DOC values within TW were as high as within CW, indicating an autochthonous DOM source. Additionally, a deep Chl-a maximum (DCM) was noticed in the boundary between the TW and SACW. Along with the DCM, we observed the production of fresh, non-colored DOM attributed to the microbial community. Finally, our results suggest that CDOM is photodegraded at the surface of CW. This is mainly due to the Ekman transport effect over the region that traps CW at the surface, making it longer exposed to solar radiation.
  • Rankinen, Katri; Enrique, José; Bernal, Cano; Holmberg, Maria; Vuorio, Kristiina; Granlund, Kirsti (Elsevier, 2019)
    Science of The Total Environment 658 (2019), 1278-1292
    In Finland, a recent ecological classification of surface waters showed that the rivers and coastal waters need attention to improve their ecological state. We combined eco-hydrological and empirical models to study chlorophyll-a concentration as an indicator of eutrophication in a small agricultural river. We used a modified story-and-simulation method to build three storylines for possible changes in future land use due to climate change and political change. The main objective in the first storyline is to stimulate economic activity but also to promote the sustainable and efficient use of resources. The second storyline is based on the high awareness but poor regulation of environmental protection, and the third is to survive as individual countries instead of being part of a unified Europe. We assumed trade of agricultural products to increase to countries outside Europe. We found that chlorophyll-a concentration in the river depended on total phosphorus concentration. In addition, there was a positive synergistic interaction between total phosphorus and water temperature. In future storylines, chlorophyll-a concentration increased due to land use and climate change. Climate change mainly had an indirect influence via increasing nutrient losses from intensified agriculture. We found that well-designed agri-environmental measures had the potential to decrease nutrient loading from fields, as long as the predicted increase in temperature remained under 2 °C. However, we were not able to achieve the nutrient reduction stated in current water protection targets. In addition, the ecological status of the river deteriorated. The influence of temperature on chlorophyll-a growth indicates that novel measures for shading rivers to decrease water temperature may be needed in the future.
  • Huotari, Jussi; Ketola, Mirva (Suomen ymäristökeskus, 2014)
    Ympäristöhallinnon ohjeita 5/2014
    Kenttäkäyttöisten antureiden ja langattoman tiedonsiirron kehittymisen myötä jatkuvatoiminen, fluoresenssiin perustuva levämäärien mittaus on yleistynyt. Mittaustapaan liittyy kuitenkin epävarmuustekijöitä, jotka on tunnettava luotettavien tulosten saamiseksi. Tämän oppaan tarkoitus on auttaa jatkuvatoimista levämäärän mittausta suunnittelevia tai jo toteuttavia tahoja huomioimaan ne moninaiset seikat, joita mittaamiseen ja aineiston laadunvarmistukseen liittyy. Opas pyrkii antamaan lukijalle kuvan fluoresenssiin perustuvan jatkuvatoimisen levämäärien mittauksen perusteista, lähtien levien pigmenttikoostumuksesta ja fluoresenssista ilmiönä, edeten fluoresenssiin vaikuttaviin tekijöihin sekä mittaustavan rajoitteisiin. Opas antaa ohjeita mittauslaitteiston valintaan ja hankintaan, sekä sijoittamiseen, käyttöön ja huoltoon tuoden esille yleisimpiä ongelmakohtia. Lopuksi keskitytään aineiston laadunvarmistukseen ja annetaan ohjeita laitteiston ja aineiston kalibrointia sekä aineiston käsittelyä varten. Tämä opas on käyttäjiltä käyttäjille suunnattu teos, johon on koottu eri tavoin fluoresenssimittausten parissa työskennelleiden henkilöiden arvokkaita kokemuksia ensimmäistä kertaa yksiin kansiin.
  • Korhonen, Kaija; Mäkinen, Irma; Näykki, Teemu; Järvinen, Olli; Tervonen, Keijo; Ilmakunnas, Markku (Suomen ympäristökeskus, 2006)
    Suomen ympäristökeskuksen raportteja 17/2006
  • Wade, Andrew J.; Skeffington, Richard A.; Couture, Raoul-Marie; Erlandsson Lampa, Martin; Groot, Simon; Halliday, Sarah J.; Harezlak, Valesca; Hejzlar, Josef; Jackson-Blake, Leah A.; Lepistö, Ahti; Papastergiadou, Eva; Riera, Joan Lluís; Rankinen, Katri; Shahgedanova, Maria; Trolle, Dennis; Whitehead, Paul G.; Psaltopoulos, Demetris; Skuras, Dimitris (MDPI AG, 2022)
    Recent studies have demonstrated that projected climate change will likely enhance nitrogen (N) and phosphorus (P) loss from farms and farmland, with the potential to worsen freshwater eutrophication. Here, we investigate the relative importance of the climate and land use drivers of nutrient loss in nine study catchments in Europe and a neighboring country (Turkey), ranging in area from 50 to 12,000 km2. The aim was to quantify whether planned large-scale, land use change aimed at N and P loss reduction would be effective given projected climate change. To this end, catchment-scale biophysical models were applied within a common framework to quantify the integrated effects of projected changes in climate, land use (including wastewater inputs), N deposition, and water use on river and lake water quantity and quality for the mid-21st century. The proposed land use changes were derived from catchment stakeholder workshops, and the assessment quantified changes in mean annual N and P concentrations and loads. At most of the sites, the projected effects of climate change alone on nutrient concentrations and loads were small, whilst land use changes had a larger effect and were of sufficient magnitude that, overall, a move to more environmentally focused farming achieved a reduction in N and P concentrations and loads despite projected climate change. However, at Beyşehir lake in Turkey, increased temperatures and lower precipitation reduced water flows considerably, making climate change, rather than more intensive nutrient usage, the greatest threat to the freshwater ecosystem. Individual site responses did however vary and were dependent on the balance of diffuse and point source inputs. Simulated lake chlorophyll-a changes were not generally proportional to changes in nutrient loading. Further work is required to accurately simulate the flow and water quality extremes and determine how reductions in freshwater N and P translate into an aquatic ecosystem response.
  • Brando, Vittorio E.; Sammartino, Michela; Colella, Simone; Bracaglia, Marco; Di Cicco, Annalisa; D’Alimonte, Davide; Kajiyama, Tamito; Kaitala, Seppo; Attila, Jenni (MDPI, 2021)
    Remote Sensing 2021, 13(16), 3071
    A relevant indicator for the eutrophication status in the Baltic Sea is the Chlorophyll-a concentration (Chl-a). Alas, ocean color remote sensing applications to estimate Chl-a in this brackish basin, characterized by large gradients in salinity and dissolved organic matter, are hampered by its optical complexity and atmospheric correction limits. This study presents Chl-a retrieval improvements for a fully reprocessed multi-sensor time series of remote-sensing reflectances (Rrs) at ~1 km spatial resolution for the Baltic Sea. A new ensemble scheme based on multilayer perceptron neural net (MLP) bio-optical algorithms has been implemented to this end. The study documents that this approach outperforms band-ratio algorithms when compared to in situ datasets, reducing the gross overestimates of Chl-a observed in the literature for this basin. The Rrs and Chl-a time series were then exploited for eutrophication monitoring, providing a quantitative description of spring and summer phytoplankton blooms in the Baltic Sea over 1998–2019. The analysis of the phytoplankton dynamics enabled the identification of the latitudinal variations in the spring bloom phenology across the basin, the early blooming in spring in the last two decades, and the description of the spatiotemporal coverage of summer cyanobacterial blooms in the central and southern Baltic Sea.
  • Kauppila, Pirkko (Finnish Environment Institute, 2007)
    Monographs of the Boreal Environment Research 31
    The tackling of coastal eutrophication requires water protection measures based on status assessments of water quality. The main purpose of this thesis was to evaluate whether it is possible both scientifically and within the terms of the European Union Water Framework Directive (WFD) to assess the status of coastal marine waters reliably by using phytoplankton biomass (ww) and chlorophyll a (Chl) as indicators of eutrophication in Finnish coastal waters. Empirical approaches were used to study whether the criteria, established for determining an indicator, are fulfilled.The first criterion (i) was that an indicator should respond to anthropogenic stresses in a predictable manner and has low variability in its response. Summertime Chl could be predicted accurately by nutrient concentrations, but not from the external annual loads alone, because of the rapid affect of primary production and sedimentation close to the loading sources in summer. The most accurate predictions were achieved in the Archipelago Sea, where total phosphorus (TP) and total nitrogen (TN) alone accounted for 87% and 78% of the variation in Chl, respectively. In river estuaries, the TP mass-balance regression model predicted Chl most accurate when nutrients originated from point-sources, whereas land-use regression models were most accurately in cases when nutrients originated mainly from diffuse sources. The inclusion of morphometry (e.g. mean depth) into nutrient models improved accuracy of the predictions.The second criterion (ii) was associated with the WFD. It requires that an indicator should have type-specific reference conditions, which are defined as “conditions where the values of the biological quality elements are at high ecological status”. In establishing reference conditions, the empirical approach could only be used in the outer coastal waters types, where historical observations of Secchi depth of the early 1900s are available. Most accurate prediction was achieved in the Quark. However, the average reference values in the outer coastal types are underestimated in sites near the zone of the inner coastal waters. In the inner coastal water types, reference Chl, estimated from present monitoring data, are imprecise - not only because of the less accurate estimation method - but also because the intrinsic characteristics, described for instance by morphometry, vary considerably inside these extensive inner coastal types. As for phytoplankton biomass, the reference values were less accurate than in the case of Chl, because it was possible to estimate reference conditions for biomass only by using the reconstructed Chl values, not the historical Secchi observations. An paleoecological approach was also applied to estimate reference conditions for Chl. In Laajalahti, an urban embayment off Helsinki, strongly loaded by municipal waste waters until 1986, reference conditions prevailed in the mid- and late 1800s. The recovery of the bay from pollution has delayed as a consequence of benthic release of nutrients. Laajalahti will probably not achieve the good quality objectives of the WFD on time.The third criterion (iii) was associated with coastal management including the resources it has available. Analyses of Chl are cheap and fast to carry out compared to the analyses of phytoplankton biomass and species composition; the fact which has an effect on number of samples to be taken and thereby on the reliability of assessments. However, analyses on phytoplankton biomass and species composition provide more metrics for ecological classification, the metrics which reveal various aspects of eutrophication contrary to what Chl alone does.
  • Salmi, Pauliina; Eskelinen, Matti A.; Leppänen, Matti T.; Pölönen, Ilkka (MDPI AG, 2021)
    Plants 2021, 10(2), 341
    Spectral cameras are traditionally used in remote sensing of microalgae, but increasingly also in laboratory-scale applications, to study and monitor algae biomass in cultures. Practical and cost-efficient protocols for collecting and analyzing hyperspectral data are currently needed. The purpose of this study was to test a commercial, easy-to-use hyperspectral camera to monitor the growth of different algae strains in liquid samples. Indices calculated from wavebands from transmission imaging were compared against algae abundance and wet biomass obtained from an electronic cell counter, chlorophyll a concentration, and chlorophyll fluorescence. A ratio of selected wavebands containing near-infrared and red turned out to be a powerful index because it was simple to calculate and interpret, yet it yielded strong correlations to abundances strain-specifically (0.85 < r < 0.96, p < 0.001). When all the indices formulated as A/B, A/(A + B) or (A − B)/(A + B), where A and B were wavebands of the spectral camera, were scrutinized, good correlations were found amongst them for biomass of each strain (0.66 < r < 0.98, p < 0.001). Comparison of near-infrared/red index to chlorophyll a concentration demonstrated that small-celled strains had higher chlorophyll absorbance compared to strains with larger cells. The comparison of spectral imaging to chlorophyll fluorescence was done for one strain of green algae and yielded strong correlations (near-infrared/red, r = 0.97, p < 0.001). Consequently, we described a simple imaging setup and information extraction based on vegetation indices that could be used to monitor algae cultures.
  • Takolander, Antti (Informa UK Limited, 2022)
    European Journal of Phycology
    The brown macroalga Fucus vesiculosus is a foundation species in temperate rocky shores, subjected to seasonally fluctuating environmental conditions. To obtain a more complete picture of the seasonality of F. vesiculosus ecophysiology in the northern Baltic Sea, in situ photochemistry, elemental ratios and chlorophyll a and c content of the alga were investigated in field campaigns conducted in different months throughout the year during 2017. Carbon, nitrogen, carbon to nitrogen ratio and chlorophyll a and c content of the alga varied substantially throughout the year, with highest carbon content observed in summer, and highest nitrogen content in winter. C:N ratio in F. vesiculosus apical tissue ranged from 8.6 in February to 48.3 in July. Chlorophyll a and c content followed inversely the seasonal patterns of ambient irradiance. High chlorophyll a and c content in winter was associated with higher maximum photosynthetic efficiency of energy conversion (Fv/Fm), but not with efficiency of photosynthetic energy conversion under light limitation (α). Electron transport rate correlated strongly with seawater temperature, and the highest electron transport rates were observed in summer and correlated with highest internal carbon content of the alga. Redundancy analysis conducted on measured environmental variables against physiological responses identified day of year, temperature and macronutrients in seawater as the most important variables driving the observed seasonal patterns in F. vesiculosus ecophysiology. The results suggest elevated temperatures may increase Fucus growth and photosynthesis rates in the study area.