Browsing by Subject "large-scale structure of Universe"

Sort by: Order: Results:

Now showing items 1-20 of 41
  • Smolcic, V.; Miettinen, O.; Tomicic, N.; Zamorani, G.; Finoguenov, A.; Lemaux, B. C.; Aravena, M.; Capak, P.; Chiang, Y. -K.; Civano, F.; Delvecchio, I.; Ilbert, O.; Jurlin, N.; Karim, A.; Laigle, C.; Le Fevre, O.; Marchesi, S.; McCracken, H. J.; Riechers, D. A.; Salvato, M.; Schinnerer, E.; Tasca, L.; Toft, S. (2017)
    We investigate the environment of 23 submillimetre galaxies (SMGs) drawn from a signal-to-noise (S/N)-limited sample of SMGs originally discovered in the James Clerk Maxwell Telescope (JCMT)/AzTEC 1.1 mm continuum survey of a Cosmic Evolution Survey (COSMOS) subfield and then followed up with the Submillimetre Array and Plateau de Bure Interferometer at 890 mu m and 1.3 mm, respectively. These SMGs already have well-defined multiwavelength counterparts and redshifts. We also analyse the environments of four COSMOS SMGs spectroscopically confirmed to lie at redshifts z(spec) > 4 : 5, and one at z(spec) = 2 : 49 resulting in a total SMG sample size of 28. We search for overdensities using the COSMOS photometric redshifts based on over 30 UV-NIR photometric measurements including the new UltraVISTA data release 2 and Spitzer/SPLASH data, and reaching an accuracy of sigma(Delta z/(1+z)) = (1 + z) = 0 : 0067 (0 : 0155) at z <3 : 5 (> 3.5). To identify overdensities we apply the Voronoi tessellation analysis, and estimate the redshift-space overdensity estimator delta(g) as a function of distance from the SMG and/or overdensity centre. We test and validate our approach via simulations, X-ray detected groups or clusters, and spectroscopic verifications using VUDS and zCOSMOS catalogues which show that even with photometric redshifts in the COSMOS field we can e ffi ciently retrieve overdensities out to z approximate to 5. Our results yield that 11 out of 23 (48%) JCMT/AzTEC 1.1 mm SMGs occupy overdense environments. Considering the entire JCMT/AzTEC 1.1 mm S = N >= 4 sample and taking the expected fraction of spurious detections into account, this means that 35-61% of the SMGs in the S/N-limited sample occupy overdense environments. We perform an X-ray stacking analysis in the 0.5-2 keV band using a 32 '' aperture and our SMG positions, and find statistically significant detections. For our z <2 subsample we find an average flux of (4.0 +/- 0.8) x 10(-16) erg s(-1) cm(-2) and a corresponding total mass of M-200 = 2.8 x 10(13) M-circle dot. The z > 2 subsample yields an average flux of (1.3 +/- 0.5) x 10(-16) erg s(-1) cm(-2) and a corresponding total mass of M-200 = 2 x 10(13) M-circle dot. Our results suggest a higher occurrence of SMGs occupying overdense environments at z >= 3 than at z <3. This may be understood if highly star-forming galaxies can only be formed in the highest peaks of the density field tracing the most massive dark matter haloes at early cosmic epochs, while at later times cosmic structure may have matured su ffi ciently that more modest overdensities correspond to su ffi ciently massive haloes to form SMGs.
  • Comparat, J.; Merloni, A.; Salvato, M.; Nandra, K.; Boller, T.; Georgakakis, A.; Finoguenov, A.; Dwelly, T.; Buchner, J.; Del Moro, A.; Clerc, N.; Wang, Y.; Zhao, G.; Prada, F.; Yepes, G.; Brusa, M.; Krumpe, M.; Liu, T. (2019)
    In the context of the upcoming SRG/eROSITA survey, we present an N-body simulation-based mock catalogue for X-ray-selected active galactic nucleus (AGN) samples. The model reproduces the observed hard X-ray AGN luminosity function (XLF) and the soft X-ray logN-logS from redshift 0 to 6. The XLF is reproduced to within +/- 5 per cent and the logN-logS to within +/- 20 per cent. We develop a joint X-ray - optical extinction and classification model. We adopt a set of empirical spectral energy distributions to predict observed magnitudes in the UV, optical, and NIR. With the latest eROSITA all sky survey sensitivity model, we create a high-fidelity full-sky mock catalogue of X-ray AGN. It predicts their distributions in right ascension, declination, redshift, and fluxes. Using empirical medium resolution optical spectral templates and an exposure time calculator, we find that 1.1 x 10(6) (4 x 10(5)) fibre-hours are needed to follow-up spectroscopically from the ground the detected X-ray AGN with an optical magnitude 21 <r <22.8 (22.8 <r <25) with a 4-m (8-m) class multiobject spectroscopic facility. We find that future clustering studies will measure the AGN bias to the per cent level at redshift z <1.2 and should discriminate possible scenarios of galaxy-AGN co-evolution. We predict the accuracy to which the baryon acoustic oscillation standard ruler will be measured using X-ray AGN: better than 3 per cent for AGN between redshift 0.5 to 3 and better than 1 per cent using the Ly alpha forest of X-ray QSOs discovered between redshift 2 and 3. eROSITA will provide an outstanding set of targets for future galaxy evolution and cosmological studies.
  • Allevato, V.; Viitanen, A.; Finoguenov, A.; Civano, F.; Suh, H.; Shankar, F.; Bongiorno, A.; Ferrara, A.; Gilli, R.; Miyaji, T.; Marchesi, S.; Cappelluti, N.; Salvato, M. (2019)
    Aims. We perform clustering measurements of 800 X-ray selected Chandra COSMOS Legacy (CCL) Type 2 active galactic nuclei (AGN) with known spectroscopic redshift to probe the halo mass dependence on AGN host galaxy properties, such as galaxy stellar mass M-star, star formation rate (SFR), and specific black hole accretion rate (BHAR; lambda(BHAR)) in the redshift range z;=;[0-3]. Methods. We split the sample of AGN with known spectroscopic redshits according to M-star, SFR and lambda(BHAR), while matching the distributions in terms of the other parameters, including redshift. We measured the projected two-point correlation function w(p)(r(p)) and modeled the clustering signal, for the different subsamples, with the two-halo term to derive the large-scale bias b and corresponding typical mass of the hosting halo. Results. We find no significant dependence of the large-scale bias and typical halo mass on galaxy stellar mass and specific BHAR for CCL Type 2 AGN at mean z;similar to;1, while a negative dependence on SFR is observed, i.e. lower SFR AGN reside in richer environment. Mock catalogs of AGN, matched to have the same X-ray luminosity, stellar mass, lambda(BHAR), and SFR of CCL Type 2 AGN, almost reproduce the observed M-star - M-h, lambda(BHAR) - M-h and SFR-M-h relations, when assuming a fraction of satellite AGN f(AGN)(sat) similar to 0.15fAGNsat similar to 0.15$ f_{\mathrm{AGN}}{\mathrm{sat}} \sim 0.15 $. This corresponds to a ratio of the probabilities of satellite to central AGN of being active Q;similar to;2. Mock matched normal galaxies follow a slightly steeper M-star - M-h relation, in which low mass mock galaxies reside in less massive halos than mock AGN of similar mass. Moreover, matched mock normal galaxies are less biased than mock AGN with similar specific BHAR and SFR, at least for Q > 1.
  • Lindholm, V.; Finoguenov, A.; Comparat, J.; Kirkpatrick, C. C.; Rykoff, E.; Clerc, N.; Collins, C.; Damsted, S.; Chitham, J. Ider; Padilla, N. (2021)
  • Finoguenov, A.; Rykoff, E.; Clerc, N.; Costanzi, M.; Hagstotz, S.; Chitham, J. Ider; Kiiveri, K.; Kirkpatrick, C. C.; Capasso, R.; Comparat, J.; Damsted, S.; Dupke, R.; Erfanianfar, G.; Henry, J. Patrick; Kaefer, F.; Kneib, J. -P.; Lindholm, V.; Rozo, E.; van Waerbeke, L.; Weller, J. (2020)
    Context. Large area catalogs of galaxy clusters constructed from ROSAT All-Sky Survey provide the basis for our knowledge of the population of clusters thanks to long-term multiwavelength efforts to follow up observations of these clusters.Aims. The advent of large area photometric surveys superseding previous, in-depth all-sky data allows us to revisit the construction of X-ray cluster catalogs, extending the study to lower cluster masses and higher redshifts and providing modeling of the selection function.Methods. We performed a wavelet detection of X-ray sources and made extensive simulations of the detection of clusters in the RASS data. We assigned an optical richness to each of the 24 788 detected X-ray sources in the 10 382 square degrees of the Baryon Oscillation Spectroscopic Survey area using red sequence cluster finder redMaPPer version 5.2 run on Sloan Digital Sky Survey photometry. We named this survey COnstrain Dark Energy with X-ray (CODEX) clusters.Results. We show that there is no obvious separation of sources on galaxy clusters and active galactic nuclei (AGN) based on the distribution of systems on their richness. This is a combination of an increasing number of galaxy groups and their selection via the identification of X-ray sources either by chance or by groups hosting an AGN. To clean the sample, we use a cut on the optical richness at the level corresponding to the 10% completeness of the survey and include it in the modeling of the cluster selection function. We present the X-ray catalog extending to a redshift of 0.6.Conclusions. The CODEX suvey is the first large area X-ray selected catalog of northern clusters reaching fluxes of 10(-13) ergs s(-1) cm(-2). We provide modeling of the sample selection and discuss the redshift evolution of the high end of the X-ray luminosity function (XLF). Our results on z<0.3 XLF agree with previous studies, while we provide new constraints on the 0.3<z<0.6 XLF. We find a lack of strong redshift evolution of the XLF, provide exact modeling of the effect of low number statistics and AGN contamination, and present the resulting constraints on the flat CDM.
  • Schewtschenko, J. A.; Baugh, C. M.; Wilkinson, R. J.; Boehm, C.; Pascoli, S.; Sawala, T. (2016)
    In the thermal dark matter (DM) paradigm, primordial interactions between DM and Standard Model particles are responsible for the observed DM relic density. In Boehm et al., we showed that weak-strength interactions between DM and radiation (photons or neutrinos) can erase small-scale density fluctuations, leading to a suppression of the matter power spectrum compared to the collisionless cold DM (CDM) model. This results in fewer DM subhaloes within Milky Way-like DM haloes, implying a reduction in the abundance of satellite galaxies. Here we use very high-resolution N-body simulations to measure the dynamics of these subhaloes. We find that when interactions are included, the largest subhaloes are less concentrated than their counterparts in the collisionless CDM model and have rotation curves that match observational data, providing a new solution to the 'too big to fail' problem.
  • Euclid Collaboration; Knabenhans, Mischa; Stadel, Joachim; Marelli, Stefano; Potter, Doug; Teyssier, Romain; Legrand, Laurent; Schneider, Aurel; Sudret, Bruno; Blot, Linda; Awan, Saeeda; Burigana, Carlo; Carvalho, Carla Sofia; Kurki-Suonio, Hannu; Sirri, Gabriele (2019)
    We present a new power spectrum emulator named EuclidEmulator that estimates the nonlinear correction to the linear dark matter power spectrum depending on the six cosmological parameters ωb, ωm, ns, h, w0, and σ8. It is constructed using the uncertainty quantification software UQLab using a spectral decomposition method called polynomial chaos expansion. All steps in its construction have been tested and optimized: the large highresolution N-body simulations carried out with PKDGRAV3 were validated using a simulation from the Euclid Flagship campaign and demonstrated to have converged up to wavenumbers k ≈ 5 h Mpc−1 for redshifts z ≤ 5. The emulator is based on 100 input cosmologies simulated in boxes of (1250 Mpc/h)3 using 20483 particles. We show that by creating mock emulators it is possible to successfully predict and optimize the performance of the final emulator prior to performing any N-body simulations. The absolute accuracy of the final nonlinear power spectrum is as good as one obtained with N-body simulations, conservatively, ∼1 per cent for k 1 h Mpc−1 and z 1. This enables efficient forward modelling in the nonlinear regime, allowing for estimation of cosmological parameters using Markov ChainMonteCarlo methods. EuclidEmulator has been compared to HALOFIT, CosmicEmu, and NGenHalofit, and shown to be more accurate than these other approaches. This work paves a new way for optimal construction of future emulators that also consider other cosmological observables, use higher resolution input simulations, and investigate higher dimensional cosmological parameter spaces.
  • Euclid Collaboration; Knabenhans, M.; Stadel, J.; Gozaliasl, G.; Keihänen, E.; Kirkpatrick , C. C.; Kurki-Suonio, H.; Väliviita, J. (2021)
    We present a new, updated version of the EuclidEmulator (called EuclidEmulator2), a fast and accurate predictor for the nonlinear correction of the matter power spectrum. 2 per cent level accurate emulation is now supported in the eight-dimensional parameter space of w(0)w(a)CDM+Sigma m(nu) models between redshift z = 0 and z = 3 for spatial scales within the range . In order to achieve this level of accuracy, we have had to improve the quality of the underlying N-body simulations used as training data: (i) we use self-consistent linear evolution of non-dark matter species such as massive neutrinos, photons, dark energy, and the metric field, (ii) we perform the simulations in the so-called N-body gauge, which allows one to interpret the results in the framework of general relativity, (iii) we run over 250 high-resolution simulations with 3000(3) particles in boxes of 1(h(-1)Gpc)(3) volumes based on paired-and-fixed initial conditions, and (iv) we provide a resolution correction that can be applied to emulated results as a post-processing step in order to drastically reduce systematic biases on small scales due to residual resolution effects in the simulations. We find that the inclusion of the dynamical dark energy parameter w(a) significantly increases the complexity and expense of creating the emulator. The high fidelity of EuclidEmulator2 is tested in various comparisons against N-body simulations as well as alternative fast predictors such as HALOFIT, HMCode, and CosmicEmu. A blind test is successfully performed against the Euclid Flagship v2.0 simulation. Nonlinear correction factors emulated with EuclidEmulator2 are accurate at the level of or better for and z
  • Euclid Collaboration; Lepori, F.; Tutusaus, I.; Gozaliasl, G.; Keihänen, E.; Kirkpatrick , C. C.; Kurki-Suonio, H.; Lindholm, Valtteri; Väliviita, J. (2022)
    Aims. We investigate the importance of lensing magnification for estimates of galaxy clustering and its cross-correlation with shear for the photometric sample of Euclid. Using updated specifications, we study the impact of lensing magnification on the constraints and the shift in the estimation of the best fitting cosmological parameters that we expect if this effect is neglected. Methods. We follow the prescriptions of the official Euclid Fisher matrix forecast for the photometric galaxy clustering analysis and the combination of photometric clustering and cosmic shear. The slope of the luminosity function (local count slope), which regulates the amplitude of the lensing magnification, and the galaxy bias have been estimated from the Euclid Flagship simulation. Results. We find that magnification significantly affects both the best-fit estimation of cosmological parameters and the constraints in the galaxy clustering analysis of the photometric sample. In particular, including magnification in the analysis reduces the 1 sigma errors on Omega(m,0), w(0), w(a) at the level of 20-35%, depending on how well we will be able to independently measure the local count slope. In addition, we find that neglecting magnification in the clustering analysis leads to shifts of up to 1.6 sigma in the best-fit parameters. In the joint analysis of galaxy clustering, cosmic shear, and galaxy-galaxy lensing, magnification does not improve precision, but it leads to an up to 6 sigma bias if neglected. Therefore, for all models considered in this work, magnification has to be included in the analysis of galaxy clustering and its cross-correlation with the shear signal (3 x 2pt analysis) for an accurate parameter estimation.
  • Euclid Collaboration; Ilić, S.; Aghanim, N.; Gozaliasl, G.; Keihänen, E.; Kirkpatrick , C. C.; Kurki-Suonio, H.; Lindholm, Valtteri; Väliviita, J. (2022)
    The combination and cross-correlation of the upcoming Euclid data with cosmic microwave background (CMB) measurements is a source of great expectation since it will provide the largest lever arm of epochs, ranging from recombination to structure formation across the entire past light cone. In this work, we present forecasts for the joint analysis of Euclid and CMB data on the cosmological parameters of the standard cosmological model and some of its extensions. This work expands and complements the recently published forecasts based on Euclid-specific probes, namely galaxy clustering, weak lensing, and their cross-correlation. With some assumptions on the specifications of current and future CMB experiments, the predicted constraints are obtained from both a standard Fisher formalism and a posterior-fitting approach based on actual CMB data. Compared to a Euclid-only analysis, the addition of CMB data leads to a substantial impact on constraints for all cosmological parameters of the standard ?-cold-dark-matter model, with improvements reaching up to a factor of ten. For the parameters of extended models, which include a redshift-dependent dark energy equation of state, non-zero curvature, and a phenomenological modification of gravity, improvements can be of the order of two to three, reaching higher than ten in some cases. The results highlight the crucial importance for cosmological constraints of the combination and cross-correlation of Euclid probes with CMB data.
  • Euclid Collaboration; Moneti, A.; McCracken, H. J.; Gozaliasl, G.; Keihänen, E.; Kirkpatrick , C. C.; Kurki-Suonio, H.; Lindholm, Valtteri; Väliviita, J. (2022)
    We present a new infrared survey covering the three Euclid deep fields and four other Euclid calibration fields using Spitzer Space Telescope's Infrared Array Camera (IRAC). We combined these new observations with all relevant IRAC archival data of these fields in order to produce the deepest possible mosaics of these regions. In total, these observations represent nearly 11% of the total Spitzer Space Telescope mission time. The resulting mosaics cover a total of approximately 71.5 deg(2) in the 3.6 and 4.5 mu m bands, and approximately 21.8 deg(2) in the 5.8 and 8 mu m bands. They reach at least 24 AB magnitude (measured to 5 sigma, in a 2 ''.5 aperture) in the 3.6 mu m band and up to similar to 5 mag deeper in the deepest regions. The astrometry is tied to the Gaia astrometric reference system, and the typical astrometric uncertainty for sources with 16 < [3.6] < 19 is less than or similar to 0 ''.15. The photometric calibration is in excellent agreement with previous WISE measurements. We extracted source number counts from the 3.6 mu m band mosaics, and they are in excellent agreement with previous measurements. Given that the Spitzer Space Telescope has now been decommissioned, these mosaics are likely to be the definitive reduction of these IRAC data. This survey therefore represents an essential first step in assembling multi-wavelength data on the Euclid deep fields, which are set to become some of the premier fields for extragalactic astronomy in the 2020s.
  • Euclid Collaboration; Adam, R.; Kurki-Suonio, H. (2019)
    Galaxy cluster counts in bins of mass and redshift have been shown to be a competitive probe to test cosmological models. This method requires an efficient blind detection of clusters from surveys with a well-known selection function and robust mass estimates, which is particularly challenging at high redshift. The Euclid wide survey will cover 15 000 deg(2) of the sky, avoiding contamination by light from our Galaxy and our solar system in the optical and near-infrared bands, down to magnitude 24 in the H-band. The resulting data will make it possible to detect a large number of galaxy clusters spanning a wide-range of masses up to redshift similar to 2 and possibly higher. This paper presents the final results of the Euclid Cluster Finder Challenge (CFC), fourth in a series of similar challenges. The objective of these challenges was to select the cluster detection algorithms that best meet the requirements of the Euclid mission. The final CFC included six independent detection algorithms, based on different techniques, such as photometric redshift tomography, optimal filtering, hierarchical approach, wavelet and friend-of-friends algorithms. These algorithms were blindly applied to a mock galaxy catalog with representative Euclid-like properties. The relative performance of the algorithms was assessed by matching the resulting detections to known clusters in the simulations down to masses of M-200 similar to 10(13.25) M-circle dot. Several matching procedures were tested, thus making it possible to estimate the associated systematic effects on completeness to 80% completeness for a mean purity of 80% down to masses of 10(14) M-circle dot and up to redshift z = 2. Based on these results, two algorithms were selected to be implemented in the Euclid pipeline, the Adaptive Matched Identifier of Clustered Objects (AMICO) code, based on matched filtering, and the PZWav code, based on an adaptive wavelet approach.
  • Euclid Collaboration; Keihänen, E.; Lindholm, Valtteri; Monaco, P.; Blot, L.; Kiiveri, Kimmo; Viitanen, Akke; Väliviita, J.; Kurki-Suonio, H. (2022)
    We present a method for fast evaluation of the covariance matrix for a two-point galaxy correlation function (2PCF) measured with the Landy-Szalay estimator. The standard way of evaluating the covariance matrix consists in running the estimator on a large number of mock catalogs, and evaluating their sample covariance. With large random catalog sizes (random-to-data objects' ratio M >> 1) the computational cost of the standard method is dominated by that of counting the data-random and random-random pairs, while the uncertainty of the estimate is dominated by that of data-data pairs. We present a method called Linear Construction (LC), where the covariance is estimated for small random catalogs with a size of M = 1 and M = 2, and the covariance for arbitrary M is constructed as a linear combination of the two. We show that the LC covariance estimate is unbiased. We validated the method with PINOCCHIO simulations in the range r = 20-200 h(-1) Mpc. With M = 50 and with 2h(-1) Mpc bins, the theoretical speedup of the method is a factor of 14. We discuss the impact on the precision matrix and parameter estimation, and present a formula for the covariance of covariance.
  • Ford, E. Darragh; Laigle, C.; Gozaliasl, G.; Pichon, C.; Devriendt, J.; Slyz, A.; Arnouts, S.; Dubois, Y.; Finoguenov, A.; Griffiths, R.; Kraljic, K.; Pan, H.; Peirani, S.; Sarron, F. (2019)
    Cosmic filaments are the channel through which galaxy groups assemble their mass. Cosmic connectivity, namely the number of filaments connected to a given group, is therefore expected to be an important ingredient in shaping group properties. The local connectivity is measured in COSMOS around X-ray-detected groups between redshift 0.5 and 1.2. To this end, large-scale filaments are extracted using the accurate photometric redshifts of the COSMOS2015 catalogue in two-dimensional slices of thickness 120 comoving Mpc centred on the group's redshift. The link between connectivity, group mass, and the properties of the brightest group galaxy (BGG) is investigated. The same measurement is carried out on mocks extracted from the light-cone of the hydrodynamical simulation HORIZON-AGN in order to control systematics. More massive groups are on average more connected. At fixed group mass in low-mass groups, BGG mass is slightly enhanced at high connectivity, while in high-mass groups BGG mass is lower at higher connectivity. Groups with a star-forming BGG have on average a lower connectivity at given mass. From the analysis of the HORIZON-AGN simulation, we postulate that different connectivities trace different paths of group mass assembly: at high group mass, groups with higher connectivity are more likely to have grown through a recent major merger, which might be in turn the reason for the quenching of the BGG. Future large-field photometric surveys, such as Euclid and LSST, will be able to confirm and extend these results by probing a wider mass range and a larger variety of environment.
  • Galametz, Audrey; Pentericci, Laura; Castellano, Marco; Mendel, Trevor; Hartley, Will G.; Fossati, Matteo; Finoguenov, Alexis; Almaini, Omar; Beifiori, Alessandra; Fontana, Adriano; Grazian, Andrea; Scodeggio, Marco; Kocevski, Dale D. (2018)
    We present a large-scale galaxy structure C1 J021734-0513 at z similar to 0.65 discovered in the UKIDSS UDS field, made of similar to 20 galaxy groups and clusters, spreading over 10 Mpc. We report on a VLT/VIMOS spectroscopic follow-up program that, combined with past spectroscopy, allowed us to confirm four galaxy clusters (M-200 similar to 10(14) M-circle dot) and a dozen associated groups and star-forming galaxy overdensities. Two additional filamentary structures at z similar to 0.62 and 0.69 and foreground and background clusters at 0.6 <z <0.7 were also confirmed along the line of sight. The structure subcomponents are at different formation stages. The clusters have a core dominated by passive galaxies and an established red sequence. The remaining structures are a mix of star-forming galaxy overdensities and forming groups. The presence of quiescent galaxies in the core of the latter shows that 'pre-processing' has already happened before the groups fall into their more massive neighbours. Our spectroscopy allows us to derive spectral index measurements e.g. emission/absorption line equivalent widths, strength of the 4000 angstrom break, valuable to investigate the star formation history of structure members. Based on these line measurements, we select a population of 'post-starburst' galaxies. These galaxies are preferentially found within the virial radius of clusters, supporting a scenario in which their recent quenching could be prompted by gas stripping by the dense intracluster medium. We derive stellar age estimates using Markov Chain Monte Carlo-based spectral fitting for quiescent galaxies and find a correlation between ages and colours/stellar masses which favours a top-down formation scenario of the red sequence. A catalogue of similar to 650 redshifts in UDS is released alongside the paper (via MNRAS online data).
  • Ahoranta, Jussi; Nevalainen, Jukka; Wijers, Nastasha; Finoguenov, Alexis; Bonamente, Massilimiano; Tempel, Elmo; Tilton, Evan; Schaye, Joop; Kaastra, Jelle; Gozaliasl, Ghassem (2020)
    Aims. We explore the high spectral resolution X-ray data towards the quasar 3C 273 to search for signals of hot (similar to 10^(6-7) K) X-ray-absorbing gas co-located with two established intergalactic far-ultraviolet (FUV) OVI absorbers. Methods. We analyze the soft X-ray band grating data of all XMM-Newton and Chandra instruments to search for the hot phase absorption lines at the FUV predicted redshifts. The viability of potential line detections is examined by adopting the constraints of a physically justified absorption model. The WHIM hypothesis is investigated with a complementary 3D galaxy distribution analysis and by detailed comparison of the measurement results to the WHIM properties in the EAGLE cosmological, hydrodynamical simulation. Results. At one of the examined FUV redshifts, 0.09017 +/- 0.00003, we measured signals of two hot ion species, ;VIII and x202f;IX, with a 3.9 sigma combined significance level. While the absorption signal is only marginally detected in individual co-added spectra, considering the line features in all instruments collectively and assuming collisional equilibrium for absorbing gas, we were able to constrain the temperature (kT = 0.26 +/- 0.03 keV) and the column density cm(-2)) of the absorber. Thermal analysis indicates that FUV and X-ray absorption relate to different phases, with estimated temperatures, T-FUV & x2004;3 x 10(5), and, T(X - ray)x2004;3 x 10(6) K. These temperatures match the EAGLE predictions for WHIM at the FUV/X-ray measured N-ion-ranges. We detected a large scale galactic filament crossing the sight-line at the redshift of the absorption, linking the absorption to this structure. Conclusions. This study provides observational insights into co-existing warm and hot gas within a WHIM filament and estimates the ratio of the hot and warm phases. Because the hot phase is thermally distinct from the OVI gas, the estimated baryon content of the absorber is increased, conveying the promise of X-ray follow-up studies of FUV detected WHIM in refining the picture of the missing baryons.
  • Haines, C. P.; Finoguenov, A.; Smith, G. P.; Babul, A.; Egami, E.; Mazzotta, P.; Okabe, N.; Pereira, M. J.; Bianconi, M.; Mcgee, S. L.; Ziparo, F.; Campusano, L. E.; Loyola, C. (2018)
    Galaxy clusters are expected to form hierarchically in a Lambda cold dark matter (Lambda CDM) universe, growing primarily through mergers with lower mass clusters and the continual accretion of group-mass haloes. Galaxy clusters assemble late, doubling their masses since z similar to 0.5, and so the outer regions of clusters should be replete with accreting group-mass systems. We present an XMM-Newton survey to search for X-ray groups in the infall regions of 23 massive galaxy clusters (<M-200 > similar to 10(15)M(circle dot)) at z similar to 0.2, identifying 39 X-ray groups that have been spectroscopically confirmed to lie at the cluster redshift. These groups have mass estimates in the range 2 x 10(13)-7 x 10(14)M(circle dot), and group-to-cluster mass ratios as low as 0.02. The comoving number density of X-ray groups in the infall regions is similar to 25x higher than that seen for isolated X-ray groups from the XXL survey. The average mass per cluster contained within these X-ray groups is 2.2 x 10(14)M(circle dot), or 19 +/- 5 per cent of the mass within the primary cluster itself. We estimate that similar to 10(15)M(circle dot) clusters increase their masses by 16 +/- 4 per cent between z = 0.223 and the present day due to the accretion of groups with M-200 >= 10(13.2)M(circle dot). This represents about half of the expected mass growth rate of clusters at these late epochs. The other half is likely to come from smooth accretion of matter not bound within haloes. The mass function of the infalling X-ray groups appears significantly top heavy with respect to that of 'field' X-ray systems, consistent with expectations from numerical simulations, and the basic consequences of collapsed massive dark matter haloes being biased tracers of the underlying large-scale density distribution.
  • Capasso, R.; Mohr, J. J.; Saro, A.; Biviano, A.; Clerc, N.; Finoguenov, A.; Grandis, S.; Collins, C.; Erfanianfar, G.; Damsted, S.; Kirkpatrick, C.; Kukkola, A. (2019)
    We use galaxy dynamical information to calibrate the richness-mass scaling relation of a sample of 428 galaxy clusters that are members of the CODEX sample with redshifts up to z similar to 0.7. These clusters were X-ray selected using the ROSAT All-Sky Survey (RASS) and then cross-matched to associated systems in the redMaPPer (the red sequence Matched-filter Probabilistic Percolation) catalogue from the Sloan Digital Sky Survey. The spectroscopic sample we analyse was obtained in the SPIDERS program and contains similar to 7800 red member galaxies. Adopting NFW mass and galaxy density profiles and a broad range of orbital anisotropy profiles, we use the Jeans equation to calculate halo masses. Modelling the scaling relation as lambda proportional to A(lambda) M-200c(B lambda) (1 + z)()lambda), we find the parameter constraints A(lambda) = 38.6(-4.1)(+3.1) +/- 3.9, B-lambda = 0.99(-0.07)(+0.06) +/- 0.04, and gamma(lambda) = -1.13(-0.34)(+0.32) +/- 0.49, where we present systematic uncertainties as a second component. We find good agreement with previously published mass trends with the exception of those from stacked weak lensing analyses. We note that although the lensing analyses failed to account for the Eddington bias, this is not enough to explain the differences. We suggest that differences in the levels of contamination between pure redMaPPer and RASS + redMaPPer samples could well contribute to these differences. The redshift trend we measure is more negative than but statistically consistent with previous results. We suggest that our measured redshift trend reflects a change in the cluster galaxy red sequence (RS) fraction with redshift, noting that the trend we measure is consistent with but somewhat stronger than an independently measured redshift trend in the RS fraction. We also examine the impact of a plausible model of correlated scatter in X-ray luminosity and optical richness, showing it has negligible impact on our results.
  • Capasso, R.; Mohr, J. J.; Saro, A.; Biviano, A.; Clerc, N.; Finoguenov, A.; Klein, M.; Grandis, S.; Collins, C.; Damsted, S.; Kirkpatrick, C.; Kukkola, A. (2020)
    We perform the calibration of the X-ray luminosity-mass scaling relation on a sample of 344 CODEX clusters with z <0.66 using the dynamics of their member galaxies. Spectroscopic follow-up measurements have been obtained from the SPIDERS survey, leading to a sample of 6658 red member galaxies. We use the Jeans equation to calculate halo masses, assuming an NFW mass profile and analysing a broad range of anisotropy profiles. With a scaling relation of the form L-X proportional to A(X)M(200c)(BX) E(z)(2)(1 + z)(gamma x), we find best-fitting parameters A(X) = 0.62(-0.06)(+0.05) (+/- 0.06) x 10(44) erg s(-)(1), B-X = 2.35(-0.18)(+0.21)(+/- 0.09), gamma(X) = -2.77(-1.05)(+1.06)(+/- 0.79), where we include systematic uncertainties in parentheses and for a pivot mass and redshift of 3 x 10(14) M-circle dot and 0.16, respectively. We compare our constraints with previous results, and we combine our sample with the SPT SZE-selected cluster subsample observed with XMM-Newton extending the validity of our results to a wider range of redshifts and cluster masses.
  • Zhang, Tianchi; Liao, Shihong; Li, Ming; Zhang, Jiajun (2021)
    Generating pre-initial conditions (or particle loads) is the very first step to set up a cosmological N-body simulation. In this work, we revisit the numerical convergence of pre-initial conditions on dark matter halo properties using a set of simulations which only differs in initial particle loads, i.e. grid, glass, and the newly introduced capacity constrained Voronoi tessellation (CCVT). We find that the median halo properties agree fairly well (i.e. within a convergence level of a few per cent) among simulations running from different initial loads. We also notice that for some individual haloes cross-matched among different simulations, the relative difference of their properties sometimes can be several tens of per cent. By looking at the evolution history of these poorly converged haloes, we find that they are usually merging haloes or haloes have experienced recent merger events, and their merging processes in different simulations are out-of-sync, making the convergence of halo properties become poor temporarily. We show that, comparing to the simulation starting with an anisotropic grid load, the simulation with an isotropic CCVT load converges slightly better to the simulation with a glass load, which is also isotropic. Among simulations with different pre-initial conditions, haloes in higher density environments tend to have their properties converged slightly better. Our results confirm that CCVT loads behave as well as the widely used grid and glass loads at small scales, and for the first time we quantify the convergence of two independent isotropic particle loads (i.e. glass and CCVT) on halo properties.