Browsing by Subject "leukocytes"

Sort by: Order: Results:

Now showing items 1-3 of 3
  • Turunen, Antti; Kuuliala, Antti; Mustonen, Harri; Puolakkainen, Pauli; Kylänpää, Leena; Kuuliala, Krista (2021)
    Objectives Clinical practice lacks biomarkers to predict the severity of acute pancreatitis (AP). We studied if intracellular signaling of circulating leukocytes could predict persistent organ dysfunction (OD) and secondary infections in AP. Methods A venous blood sample was taken from 174 patients with AP 72 hours or less from onset of symptoms and 31 healthy controls. Phosphorylation levels (p) of appropriately stimulated signal transducer and activator of transcription 1 (STAT1), STAT6, nuclear factor-kappa B (NF-kappa B), Akt, and nonstimulated STAT3 in monocytes, neutrophils, and lymphocytes was measured using phosphospecific flow cytometry. Results The patients showed higher pSTAT3 and lower pSTAT1, pSTAT6, pNF-kappa B, and pAkt than healthy controls. pSTAT3 in all leukocyte subtypes studied increased, and pSTAT1 in monocytes and T cells decreased in an AP severity-wise manner. In patients without OD at sampling, high pSTAT3 in monocytes and T lymphocytes were associated with development of persistent OD. In patients with OD, low interleukin-4-stimulated pSTAT6 in monocytes and neutrophils and Escherichia coli-stimulated pNF-kappa B in neutrophils predicted OD persistence. High pSTAT3 in monocytes, CD8(+) T cells, and neutrophils; low pSTAT1 in monocytes and T cells; and low pNF-kappa B in lymphocytes predicted secondary infections. Conclusions Leukocyte STAT3, STAT1, STAT6, and NF-kappa Beta phosphorylations are potential predictors of AP severity.
  • Sarin, Heikki V.; Pirinen, Eija; Pietiläinen, Kirsi H.; Isola, Ville; Häkkinen, Keijo; Perola, Markus; Hulmi, Juha J. (2021)
    Prolonged periods of energy deficit leading to weight loss induce metabolic adaptations resulting in reduced energy expenditure, but the mechanisms for energy conservation are incompletely understood. We examined 42 healthy athletic females (age 27.5 +/- 4.0 years, body mass index 23.4 +/- 1.7 kg/m(2)) who volunteered into either a group dieting for physique competition (n = 25) or a control group (n = 17). The diet group substantially reduced their energy intake and moderately increased exercise levels to induce loss of fat mass that was regained during a voluntary weight regain period. The control group maintained their typical lifestyle habits and body mass as instructed. From the diet group, fasting blood samples were drawn at baseline (PRE), after 4- to 5-month weight loss (PRE-MID), and after 4- to 5-month weight regain (MID-POST) as well as from the control group at similar intervals. Blood was analyzed to determine leukocyte transcriptome by RNA-Sequencing and serum metabolome by nuclear magnetic resonance (NMR) platform. The intensive weight loss period induced several metabolic adaptations, including a prominent suppression of transcriptomic signature for mitochondrial OXPHOS and ribosome biogenesis. The upstream regulator analysis suggested that this reprogramming of cellular energy metabolism may be mediated via AMPK/PGC1-alpha signaling and mTOR/eIF2 signaling-dependent pathways. Our findings show for the first time that prolonged energy deprivation induced modulation of mitochondrial metabolism can be observed through minimally invasive measures of leukocyte transcriptome and serum metabolome at systemic level, suggesting that adaptation to energy deficit is broader in humans than previously thought.
  • Turunen, Antti; Kuuliala, Antti; Penttilä, Anne; Kaukonen, Kirsi-Maija; Mustonen, Harri; Pettilä, Ville; Puolakkainen, Pauli; Kylänpää, Leena; Kuuliala, Krista (2020)
    Activation of intracellular signaling pathways in circulating leukocytes represents an early step in systemic immune-inflammatory response occurring e.g. in acute pancreatitis (AP) and sepsis. Previously, we found aberrations in the phosphorylation of leukocyte signaling proteins in patients with sepsis or AP (measured