Browsing by Subject "lignin nanoparticle"

Sort by: Order: Results:

Now showing items 1-2 of 2
  • Agustin, Melissa; Penttilä, Paavo; Lahtinen, Maarit; Mikkonen, Kirsi S. (2019)
    The production of lignin nanoparticles (LNPs) has opened new routes to the utilization of lignin in advanced applications. The existing challenge, however, is to develop a production method that can easily be adapted on an industrial scale. In this study, we demonstrated a green and rapid method of preparing LNPs directly from a sulfur-free alkaline pulping liquor by combining acid precipitation and ultrasonication. The combined method produced spherical LNPs, with a hierarchical nanostructure and a highly negative surface charge, within only 5 min of sonication. The mild, rapid sonication was achieved by sonicating directly without prior drying of the acid-precipitated and dialyzed lignin. Optimization of the method revealed the potential for minimizing acid consumption, shortening the dialysis time, and processing directly the alkaline liquor with as much as 20 wt % lignin. The isolated LNPs were stable during storage for 180 days, at a pH range of 4–7, and in a dispersing medium below 0.1 M NaCl. The LNPs also displayed excellent emulsifying properties, stabilizing oil-in-water emulsions. Thus, this simple and energy-efficient method opens a sustainable, straightforward, and scalable route to the production of organic solvent-free LNPs, with high potential as interface stabilizers of multiphase systems in the food and medical industries.
  • Imlimthan, Surachet; Correia, Alexandra; Figueiredo, Patricia Isabel; Lintinen, Kalle; Balasubramanian, Vimalkumar; Airaksinen, Anu; Kostiainen, Mauri A.; Almeida Santos, Helder; Sarparanta, Mirkka Päivikki (2020)
    Natural biopolymer nanoparticles (NPs), including nanocrystalline cellulose (CNC) and lignin, have shown potential as scaffolds for targeted drug delivery systems due to their wide availability, cost‐efficient preparation, and anticipated biocompatibility. Since both CNC and lignin can potentially cause complications in cell viability assays due to their ability to scatter the emitted light and absorb the assay reagents, we investigated the response of bioluminescent (CellTiter‐Glo®), colorimetric (MTT® and AlamarBlue®) and fluorometric (LIVE/DEAD®) assays for the determination of the biocompatibility of the multimodal CNC and lignin constructs in murine RAW 264.7 macrophages and 4T1 breast adenocarcinoma cell lines. Here, we have developed multimodal CNC and lignin NPs harboring the radiometal chelator DOTA (1,4,7,10‐tetraazacyclododecane‐1,4,7,10‐tetraacetic acid) and the fluorescent dye Cyanine 5 for the investigation of nanomaterial biodistribution in vivo with nuclear and optical imaging, which were then used as the model CNC and lignin nanosystems in the cell viability assay comparison. CellTiter‐Glo® based on the detection of ATP‐dependent luminescence in viable cells revealed to be the best assay for both nanoconstructs for its robust linear response to increasing NP concentration and lack of interference from either of the NP types. Both multimodal CNC and lignin NPs displayed low cytotoxicity and favorable interactions with the cell lines, suggesting that they are good candidates for nanosystem development for targeted drug delivery in breast cancer and for theranostic applications. Our results provide useful guidance for cell viability assay compatibility for CNC and lignin NPs and facilitate the future translation of the materials for in vivo applications.