Browsing by Subject "lignin"

Sort by: Order: Results:

Now showing items 1-13 of 13
  • Wessels, Bernard; Seyfferth, Carolin; Escamez, Sacha; Vain, Thomas; Antos, Kamil; Vahala, Jorma; Delhomme, Nicolas; Kangasjärvi, Jaakko; Eder, Michaela; Felten, Judith; Tuominen, Hannele (2019)
    Abstract Differentiation of xylem elements involves cell expansion, secondary cell wall deposition and programmed cell death. Transitions between these phases require strict spatiotemporal control. The function of Populus ERF139 (Potri.013G101100) in xylem differentiation was characterized in transgenic overexpression and dominant repressor lines of ERF139 in hybrid aspen (Populus tremula x tremuloides). Xylem properties, secondary cell wall (SCW) chemistry and downstream targets were analyzed in both types of transgenic trees using microscopy techniques, FT-IR, pyrolysis-GC/MS, wet chemistry methods and RNA sequencing. Opposite phenotypes were observed in the secondary xylem vessel sizes and SCW chemistry in the two different types of transgenic trees, supporting the function of ERF139 in suppressing the radial expansion of vessel elements and stimulating accumulation of guaiacyl-type lignin and possibly also xylan. Comparative transcriptomics identified genes related to SCW biosynthesis (LAC5, LBD15, MYB86) and salt and drought stress responsive genes (ANAC002, ABA1) as potential direct targets of ERF139. The phenotypes of the transgenic trees and the stem expression profiles of ERF139 potential target genes support the role of ERF139 as a transcriptional regulator of xylem cell expansion and SCW formation, possibly in response to osmotic changes of the cells. This article is protected by copyright. All rights reserved.
  • Sakari Lintinen, Kalle; Luiro, Sanna; Figueiredo, Patricia; Sakarinen, Ekaterina; Mousavi, Zekra; Seitsonen, Jani; N. S. Rivière, Guillaume; Mattinen, Ulriika; Niemelä, Matti; Tammela, Päivi; Österberg, Monika; Johansson, Leena-Sisko; Bobacka, Johan; Santos, Hélder A.; A. Kostiainen, Mauri (2019)
    Acid-precipitated lignin nanoparticles with a cationic polymer coating exhibit antibacterial activity when infused with silver. While the use of such particles would be beneficial due to their high antibacterial activity with a low silver content, their production holds steps that are difficult to scale up to inexpensive industrial manufacture. For example, the production of acid-precipitated lignin nanoparticles requires the use of ethylene glycol, which is not easily recycled. Furthermore, the binding of silver to these particles is weak, and thus the particles need to be used rapidly after preparation. Here, we show that with a deprotonation reaction of an organic solution of anhydrous lignin and subsequent ion exchange with silver nitrate and colloid formation by solvent exchange, highly spherical silver carboxylate colloidal lignin particles (AgCLPs) can be prepared. Silver is not released from the particles in deionized water but can be released in physiological conditions, shown by their high antibacterial efficacy with low silver loading. In comparison to lignin nanoparticles with weakly bound silver, AgCLPs have high antibacterial activity even without cationic polyelectrolyte coating, and they retain their antibacterial activity for days. While the rapid depletion of silver from silver-infused lignin nanoparticles can be considered beneficial for some applications, the sustained antibacterial activity of the AgCLPs with ionically bound silver will enable their use in applications where silver nanoparticles have been previously used. Our results demonstrate that CLPs, which can be produced with a closed cycle process on a large scale, can be rapidly and quantitatively functionalized into active materials.
  • Zhao, Lei (Helsingfors universitet, 2016)
    In Norway spruce (Picea abies L. Karst.) lignin forms a major part of the xylem cell walls and renders the tracheids water resistant while giving support to the cell walls and the whole tree trunk. In Norway spruce lignin is polymerized mainly from coniferyl alcohol but the origins of this monolignol are not known. In our study, we employed laser capture microdissection (LCMD) system to isolate ray parenchyma cells and xylem tracheids from thin (30-40 μm), tangential cryomicrotome sections of developing xylem of the spruce trunk. We wanted to analyse the monolignol biosynthesis pathway gene expression separately in these cell types. Our aim was to examine the possibility that coniferyl alcohol is produced in the tracheid cells, or whether also the neighboring cells (ray cells) contribute to the biosynthesis of monolignols during the lignification as has been confirmed in angiosperms before. Total RNA extracted from the collected material was used to perform low mRNA input sequencing on the Illumina HiSeq platform to identify transcripts potentially involved in monolignol biosynthesis and secretion. As a control material we used whole cryomicrotome sections containing both xylem tracheids and rays. Deep sequencing was performed to generate quantitative expression data within a particular cell type. Differential gene expression was conducted with a Chipster analysis software by using DESeq2. Altogether, 936 genes were differentially expressed between whole sections and ray cells, and 424 transcripts were more abundant in ray cells, while 512 transcripts were less abundant. Comparison between whole sections and xylem tracheids illustrated that 18 transcripts were more abundant in xylem tracheids and 275 transcripts were less abundant. Our study demonstrated the usefulness of LCMD combined with RNA-Seq to characterize gene expression in specific cell types.
  • West, Mark A.; Hickson, Aynsley C.; Mattinen, Maija-Liisa; Lloyd-Jones, Gareth (2014)
    Lignin preparations from kraft and sulfite pulping, steam explosion, and enzyme saccharification processes were assessed as substrates for lignin polymerization catalyzed by Trametes hirsuta laccase (ThL). Oxygen consumption associated with laccase catalyzed oxidation of the selected lignins was measured using a microplate-based oxygen assay. Laccase-induced changes in the molecular masses of the lignin polymers were assessed with aqueous-alkaline size exclusion chromatography (SEC) and changes in monomeric phenolics by reverse-phase high pressure liquid chromatography (HPLC). Obtaining consistent results in the lignin-laccase assay system required careful pH monitoring and control. All lignin preparations were oxidized by ThL, the rate being highest for steam-exploded eucalypt and lowest for enzyme-saccharified lignin. Comparing lignins, higher lignin-laccase reactivity was correlated with lower lignin molecular mass and higher amounts of monomeric phenolics. Solubility was not an indicator of reactivity. Steam-exploded and lignosulfonate-treated pine preparations were further fractionated by ultrafiltration to determine what molecular mass fractions were the most reactive in ThL catalyzed oxidation. Both retentate (> 3kDa), and to a lesser degree permeate (<3kDa), fractions were reactive.
  • Bock, Peter; Nousiainen, Paula; Elder, Thomas; Blaukopf, Markus; Amer, Hassan; Zirbs, Ronald; Potthast, Antje; Gierlinger, Notburga (2020)
    Vibrational spectroscopy is a very suitable tool for investigating the plant cell wall in situ with almost no sample preparation. The structural information of all different constituents is contained in a single spectrum. Interpretation therefore heavily relies on reference spectra and understanding of the vibrational behavior of the components under study. For the first time, we show infrared (IR) and Raman spectra of dibenzodioxocin (DBDO), an important lignin substructure. A detailed vibrational assignment of the molecule, based on quantum chemical computations, is given in the Supporting Information; the main results are found in the paper. Furthermore, we show IR and Raman spectra of synthetic guaiacyl lignin (dehydrogenation polymer-G-DHP). Raman spectra of DBDO and G-DHP both differ with respect to the excitation wavelength and therefore reveal different features of the substructure/polymer. This study confirms the idea previously put forward that Raman at 532 nm selectively probes end groups of lignin, whereas Raman at 785 nm and IR seem to represent the majority of lignin substructures.
  • Paaso, Ulla; Keski-Saari, Sarita; Keinänen, Markku; Karvinen, Heini; Silfver, Tarja; Rousi, Matti; Mikola, Juha (2017)
    Abundant secondary metabolites, such as condensed tannins, and their interpopulation genotypic variation can remain through plant leaf senescence and affect litter decomposition. Whether the intrapopulation genotypic variation of a more diverse assortment of secondary metabolites equally persists through leaf senescence and litter decomposition is not well understood. We analyzed concentrations of intracellular phenolics, epicuticular flavonoid aglycones, epicuticular triterpenoids, condensed tannins, and lignin in green leaves, senescent leaves and partly decomposed litter of silver birch, Betula pendula. Broad-sense heritability (H-2) and coefficient of genotypic variation (CVG) were estimated for metabolites in senescent leaves and litter using 19 genotypes selected from a B. pendula population in southern Finland. We found that most of the secondary metabolites remained through senescence and decomposition and that their persistence was related to their chemical properties. Intrapopulation H-2 and CVG for intracellular phenolics, epicuticular flavonoid aglycones and condensed tannins were high and remarkably, increased from senescent leaves to decomposed litter. The rank of genotypes in metabolite concentrations was persistent through litter decomposition. Lignin was an exception, however, with a diminishing genotypic variation during decomposition, and the concentrations of lignin and condensed tannins had a negative genotypic correlation in the senescent leaves. Our results show that secondary metabolites and their intrapopulation genotypic variation can for the most part remain through leaf senescence and early decomposition, which is a prerequisite for initial litter quality to predict variation in litter decomposition rates. Persistent genotypic variation also opens an avenue for selection to impact litter decomposition in B. pendula populations through acting on their green foliage secondary chemistry. The negative genotypic correlations and diminishing heritability of lignin concentrations may, however, counteract this process.
  • Rahikainen, Jenni (Helsingfors universitet, 2009)
    Environmental concerns and limited availability of fossil hydrocarbons have boosted the research of renewable feedstocks and their processing into fuels and chemicals. Currently, vast majority of transportation fuels and bulk chemicals are refined from crude oil, but renewable lignocellulosic plant biomass has long been recognised as potential feedstock for liquid fuel and chemical production. Several alternative processes exist for biomass refining, lignocellulose-to-ethanol process being among the most studied processes. First, lignocellulose is pretreated in order to deconstruct the recalcitrant structures of plant cell walls and expose cellulosic fibrils. Subsequently, biotechnical process utilises cellulolytic enzymes of fungal origin to depolymerise cellulose down to glucose monomers and oligomers. Monomeric sugars serve as a source for platform chemicals in further conversions. Lignocellulose consists mainly of cellulose, hemicellulose and lignin. It is generally accepted that lignin has an inhibitory effect during enzymatic hydrolysis of cellulose and part of this effect is caused by irreversible cellulase adsorption on lignin. Fungal cellulase system consists of several enzyme components that contribute to the effective degradation of insoluble cellulosic substrate. Cellulases are traditionally divided to three groups according to enzymatic activity: exoglucanases, endoglucanases and ?-glucosidases. Different enzyme components are shown to have different affinity to lignin which enables screening or engineering of weak lignin-binding enzymes. However, too little is still known about enzyme-lignin interactions and competitive nature of enzyme binding on lignin. In this study, lignin-rich residues were isolated from steam pretreated spruce (SPS) using three different methods: enzymatic hydrolysis, acid hydrolysis and alkali extraction. Lignin residues were characterized and used in adsorption studies with commercial cellulase preparations from Trichoderma reesei (Celluclast 1.5L) and Aspergillus niger (Novozym 188). Enzyme activity measurements and protein analytics were employed to reveal competitive adsorption of cellulases and catalytic activity of solid-bound enzymes. Results showed that T. reesei enzymes had high affinity on lignocellulosic SPS and all SPS-derived lignins, but enzyme activity measurements revealed considerably divergent competitive adsorption patterns. Among all the isolated lignins, lignin-rich residue obtained by enzymatic hydrolysis of SPS and subsequent protease purification was evaluated as most suited adsorption substrate for further adsorption studies and screening purposes. ?-glucosidases from T. reesei and A. niger were shown to have highly distinctive adsorption behaviour on the lignin-rich substrates: A. niger ?-glucosidase lacked affinity to lignin, whereas T. reesei ?-glucosidase adsorbed to all lignin-rich particles. Lignin-bound Trichoderma reesei endoglucanases and CBH I exoglucanase were shown to retained high activity towards soluble substrates used in activity measurements. On the contrary, same enzymes were unable to processively hydrolyze insoluble crystalline cellulose.
  • Mansikkala, Tuomas; Patanen, Minna; Karkonen, Anna; Korpinen, Risto; Pranovich, Andrey; Ohigashi, Takuji; Swaraj, Sufal; Seitsonen, Jani; Ruokolainen, Janne; Huttula, Marko; Saranpaa, Pekka; Piispanen, Riikka (2020)
    Lignans are bioactive compounds that are especially abundant in the Norway spruce (Picea abiesL. Karst.) knotwood. By combining a variety of chromatographic, spectroscopic and imaging techniques, we were able to quantify, qualify and localise the easily extractable lignans in the xylem tissue. The knotwood samples contained 15 different lignans according to the gas chromatography-mass spectrometry analysis. They comprised 16% of the knotwood dry weight and 82% of the acetone extract. The main lignans were found to be hydroxymatairesinols HMR1 and HMR2. Cryosectioned and resin-embedded ultrathin sections of the knotwood were analysed with scanning transmission X-ray microscopy (STXM). Cryosectioning was found to retain only lignan residues inside the cell lumina. In the resin-embedded samples, lignan was interpreted to be unevenly distributed inside the cell lumina, and partially confined in deposits which were either readily present in the lumina or formed when OsO(4)used in staining reacted with the lignans. Furthermore, the multi-technique characterisation enabled us to obtain information on the chemical composition of the structural components of knotwood. A simple spectral analysis of the STXM data gave consistent results with the gas chromatographic methods about the relative amounts of cell wall components (lignin and polysaccharides). The STXM analysis also indicated that a torus of a bordered pit contained aromatic compounds, possibly lignin.
  • Seyfferth, Carolin; Wessels, Bernard A.; Vahala, Jorma; Kangasjarvi, Jaakko; Delhomme, Nicolas; Hvidsten, Torgeir R.; Tuominen, Hannele; Lundberg-Felten, Judith (2021)
    Secondary growth relies on precise and specialized transcriptional networks that determine cell division, differentiation, and maturation of xylem cells. We identified a novel role for the ethylene-induced Populus Ethylene Response Factor PtERF85 (Potri.015G023200) in balancing xylem cell expansion and secondary cell wall (SCW) formation in hybrid aspen (Populus tremula x tremuloides). Expression of PtERF85 is high in phloem and cambium cells and during the expansion of xylem cells, while it is low in maturing xylem tissue. Extending PtERF85 expression into SCW forming zones of woody tissues through ectopic expression reduced wood density and SCW thickness of xylem fibers but increased fiber diameter. Xylem transcriptomes from the transgenic trees revealed transcriptional induction of genes involved in cell expansion, translation, and growth. The expression of genes associated with plant vascular development and the biosynthesis of SCW chemical components such as xylan and lignin, was down-regulated in the transgenic trees. Our results suggest that PtERF85 activates genes related to xylem cell expansion, while preventing transcriptional activation of genes related to SCW formation. The importance of precise spatial expression of PtERF85 during wood development together with the observed phenotypes in response to ectopic PtERF85 expression suggests that PtERF85 contributes to the transition of fiber cells from elongation to secondary cell wall deposition.
  • Mikkonen, Kirsi S. (2020)
    Wood biomass is an abundant renewable source of materials, but due to the accelerating depletion of natural resources, it is important to explore new ways to use it in a more sustainable manner. Modern technologies enable the recovery and valorization of the main components of wood—namely, cellulose, lignin, and hemicelluloses—contributing to sustainability. However, the method of isolation and resulting structure and purity of lignocellulosic materials determine their functionality and applicability. This review discusses the properties of all three main wood-based compounds that can stabilize emulsions, a class of industrial dispersions that are widely used in life science applications and chemicals. Due to the multi-billion-dollar annual market for hydrocolloids, the food, pharmaceutical, cosmetic, coating, and paint industries are actively seeking new sustainable emulsion stabilizers that fulfill the demanding requirements regarding safety and functionality. Wood-derived stabilizers facilitate various mechanisms involved in emulsion stabilization: (1) development of amphiphilic structures that decrease interfacial tension, (2) stabilization of interfaces by particles according to the Pickering theory, and (3) increase in the viscosity of emulsions’ continuous phase. This review presents pathways for treating cellulose, lignin, and hemicelluloses to achieve efficient stabilization and provides suggestions for their broad use in emulsions.
  • Lyczakowski, Jan J.; Bourdon, Matthieu; Terrett, Oliver M.; Helariutta, Ykä; Wightman, Raymond; Dupree, Paul (2019)
    The woody secondary cell walls of plants are the largest repository of renewable carbon biopolymers on the planet. These walls are made principally from cellulose and hemicelluloses and are impregnated with lignin. Despite their importance as the main load bearing structure for plant growth, as well as their industrial importance as both a material and energy source, the precise arrangement of these constituents within the cell wall is not yet fully understood. We have adapted low temperature scanning electron microscopy (cryo-SEM) for imaging the nanoscale architecture of angiosperm and gymnosperm cell walls in their native hydrated state. Our work confirms that cell wall macrofibrils, cylindrical structures with a diameter exceeding 10 nm, are a common feature of the native hardwood and softwood samples. We have observed these same structures in Arabidopsis thaliana secondary cell walls, enabling macrofibrils to be compared between mutant lines that are perturbed in cellulose, hemicellulose, and lignin formation. Our analysis indicates that the macrofibrils in Arabidopsis cell walls are dependent upon the proper biosynthesis, or composed, of cellulose, xylan, and lignin. This study establishes that cryo-SEM is a useful additional approach for investigating the native nanoscale architecture and composition of hardwood and softwood secondary cell walls and demonstrates the applicability of Arabidopsis genetic resources to relate fibril structure with wall composition and biosynthesis.
  • Imlimthan, Surachet; Correia, Alexandra; Figueiredo, Patricia Isabel; Lintinen, Kalle; Balasubramanian, Vimalkumar; Airaksinen, Anu; Kostiainen, Mauri A.; Almeida Santos, Helder; Sarparanta, Mirkka Päivikki (2020)
    Natural biopolymer nanoparticles (NPs), including nanocrystalline cellulose (CNC) and lignin, have shown potential as scaffolds for targeted drug delivery systems due to their wide availability, cost‐efficient preparation, and anticipated biocompatibility. Since both CNC and lignin can potentially cause complications in cell viability assays due to their ability to scatter the emitted light and absorb the assay reagents, we investigated the response of bioluminescent (CellTiter‐Glo®), colorimetric (MTT® and AlamarBlue®) and fluorometric (LIVE/DEAD®) assays for the determination of the biocompatibility of the multimodal CNC and lignin constructs in murine RAW 264.7 macrophages and 4T1 breast adenocarcinoma cell lines. Here, we have developed multimodal CNC and lignin NPs harboring the radiometal chelator DOTA (1,4,7,10‐tetraazacyclododecane‐1,4,7,10‐tetraacetic acid) and the fluorescent dye Cyanine 5 for the investigation of nanomaterial biodistribution in vivo with nuclear and optical imaging, which were then used as the model CNC and lignin nanosystems in the cell viability assay comparison. CellTiter‐Glo® based on the detection of ATP‐dependent luminescence in viable cells revealed to be the best assay for both nanoconstructs for its robust linear response to increasing NP concentration and lack of interference from either of the NP types. Both multimodal CNC and lignin NPs displayed low cytotoxicity and favorable interactions with the cell lines, suggesting that they are good candidates for nanosystem development for targeted drug delivery in breast cancer and for theranostic applications. Our results provide useful guidance for cell viability assay compatibility for CNC and lignin NPs and facilitate the future translation of the materials for in vivo applications.
  • Kowalczyk, Joanna; Peng, Mao; Pawlowski, Megan; Lipzen, Anna; Ng, Vivian; Singan, Vasanth; Wang, Mei; Grigoriev, Igor V.; Mäkelä, Miia (2019)
    Lignocellulosic plant biomass is an important feedstock for bio-based economy. In particular, it is an abundant renewable source of aromatic compounds, which are present as part of lignin, as side-groups of xylan and pectin, and in other forms, such as tannins. As filamentous fungi are the main organisms that modify and degrade lignocellulose, they have developed a versatile metabolism to convert the aromatic compounds that are toxic at relatively low concentrations to less toxic ones. During this process, fungi form metabolites some of which represent high-value platform chemicals or important chemical building blocks, such as benzoic, vanillic, and protocatechuic acid. Especially basidiomycete white-rot fungi with unique ability to degrade the recalcitrant lignin polymer are expected to perform highly efficient enzymatic conversions of aromatic compounds, thus having huge potential for biotechnological exploitation. However, the aromatic metabolism of basidiomycete fungi is poorly studied and knowledge on them is based on the combined results of studies in variety of species, leaving the overall picture in each organism unclear. Dichomitus squalens is an efficiently wood-degrading white-rot basidiomycete that produces a diverse set of extracellular enzymes targeted for lignocellulose degradation, including oxidative enzymes that act on lignin. Our recent study showed that several intra- and extracellular aromatic compounds were produced when D. squalens was cultivated on spruce wood, indicating also versatile aromatic metabolic abilities for this species. In order to provide the first molecular level systematic insight into the conversion of plant biomass derived aromatic compounds by basidiomycete fungi, we analyzed the transcriptomes of D. squalens when grown with 10 different lignocellulose-related aromatic monomers. Significant differences for example with respect to the expression of lignocellulose degradation related genes, but also putative genes encoding transporters and catabolic pathway genes were observed between the cultivations supplemented with the different aromatic compounds. The results demonstrate that the transcriptional response of D. squalens is highly dependent on the specific aromatic compounds present suggesting that instead of a common regulatory system, fine-tuned regulation is needed for aromatic metabolism.