Browsing by Subject "meriekologia"

Sort by: Order: Results:

Now showing items 1-6 of 6
  • Korpinen, Samuli; Laamanen, Leena; Bergström, Lena; Nurmi, Marco; Andersen, Jesper H.; Haapaniemi, Juuso; Harvey, E. Therese; Murray, Ciaran J.; Peterlin, Monika; Kallenbach, Emilie; Klančnik, Katja; Stein, Ulf; Tunesi, Leonardo; Vaughan, David; Reker, Johnny (Royal Swedish Academy of Sciences, 2021)
    Ambio 50 (2021), 1325–1336
    Marine ecosystems are under high demand for human use, giving concerns about how pressures from human activities may affect their structure, function, and status. In Europe, recent developments in mapping of marine habitats and human activities now enable a coherent spatial evaluation of potential combined effects of human activities. Results indicate that combined effects from multiple human pressures are spread to 96% of the European marine area, and more specifically that combined effects from physical disturbance are spread to 86% of the coastal area and 46% of the shelf area. We compare our approach with corresponding assessments at other spatial scales and validate our results with European-scale status assessments for coastal waters. Uncertainties and development points are identified. Still, the results suggest that Europe’s seas are widely disturbed, indicating potential discrepancy between ambitions for Blue Growth and the objective of achieving good environmental status within the Marine Strategy Framework Directive.
  • Kraft, Kaisa; Seppälä, Jukka; Hällfors, Heidi; Suikkanen, Sanna; Ylöstalo, Pasi; Anglès, Sílvia; Kielosto, Sami; Kuosa, Harri; Laakso, Lauri; Honkanen, Martti; Lehtinen, Sirpa; Oja, Johanna; Tamminen, Timo (Frontiers Media S.A., 2021)
    Frontiers in Marine Science 8: 594144
    Cyanobacteria are an important part of phytoplankton communities, however, they are also known for forming massive blooms with potentially deleterious effects on recreational use, human and animal health, and ecosystem functioning. Emerging high-frequency imaging flow cytometry applications, such as Imaging FlowCytobot (IFCB), are crucial in furthering our understanding of the factors driving bloom dynamics, since these applications provide community composition information at frequencies impossible to attain using conventional monitoring methods. However, the proof of applicability of automated imaging applications for studying dynamics of filamentous cyanobacteria is still scarce. In this study we present the first results of IFCB applied to a Baltic Sea cyanobacterial bloom community using a continuous flow-through setup. Our main aim was to demonstrate the pros and cons of the IFCB in identifying filamentous cyanobacterial taxa and in estimating their biomass. Selected environmental parameters (water temperature, wind speed and salinity) were included, in order to demonstrate the dynamics of the system the cyanobacteria occur in and the possibilities for analyzing high-frequency phytoplankton observations against changes in the environment. In order to compare the IFCB results with conventional monitoring methods, filamentous cyanobacteria were enumerated from water samples using light microscopical analysis. Two common bloom forming filamentous cyanobacteria in the Baltic Sea, Aphanizomenon flosaquae and Dolichospermum spp. dominated the bloom, followed by an increase in Oscillatoriales abundance. The IFCB results compared well with the results of the light microscopical analysis, especially in the case of Dolichospermum. Aphanizomenon biomass varied slightly between the methods and the Oscillatoriales results deviated the most. Bloom formation was initiated as water temperature increased to over 15°C and terminated as the wind speed increased, dispersing the bloom. Community shifts were closely related to movements of the water mass. We demonstrate how using a high-frequency imaging flow cytometry application can help understand the development of cyanobacteria summer blooms.
  • Seppänen, Pertti (University of Helsinki, 1971)
  • Raateoja, Mika; Myrberg, Kai; Pitkänen, Heikki; Lehtoranta, Jouni (Suomen ympäristökeskus, 2015)
    SYKE Policy Brief
  • Blenckner, Thorsten; Möllmann, Christian; Stewart Lowndes, Julia; Griffiths, Jennifer R.; Campbell, Eleanore; De Cervo, Andrea; Belgrano, Andrea; Boström, Christoffer; Fleming, Vivi; Frazier, Melanie; Neuenfeldt, Stefan; Niiranen, Susa; Nilsson, Annika; Ojaveer, Henn; Olsson, Jens; Palmlöv, Christine S.; Quaas, Martin; Rickels, Wilfried; Sobek, Anna; Viitasalo, Markku; Wikström, Sofia A.; Halpern, Benjamin S. (John Wiley & Sons, 2021)
    People and Nature 3: 2
    1. Improving the health of coastal and open sea marine ecosystems represents a substantial challenge for sustainable marine resource management, since it requires balancing human benefits and impacts on the ocean. This challenge is often exacerbated by incomplete knowledge and lack of tools that measure ocean and coastal ecosystem health in a way that allows consistent monitoring of progress towards predefined management targets. The lack of such tools often limits capabilities to enact and enforce effective governance. 2. We introduce the Baltic Health Index (BHI) as a transparent, collaborative and repeatable assessment tool. The Index complements existing, more ecological-oriented, approaches by including a human dimension on the status of the Baltic Sea, an ecosystem impacted by multiple anthropogenic pressures and governed by a multitude of comprehensive national and international policies. Using a large amount of social–ecological data available, we assessed the health of the Baltic Sea for nine goals that represent the status towards set targets, for example, clean waters, biodiversity, food provision, natural products extraction and tourism. 3. Our results indicate that the overall health of the Baltic Sea is suboptimal (a score of 76 out of 100), and a substantial effort is required to reach the management objectives and associated targets. Subregionally, the lowest BHI scores were measured for carbon storage, contaminants and lasting special places (i.e. marine protected areas), albeit with large spatial variation. 4. Overall, the likely future status of all goals in the BHI averaged for the entire Baltic Sea is better than the present status, indicating a positive trend towards a healthier Baltic Sea. However, in some Baltic Sea basins, the trend for specific goals was decreasing, highlighting locations and issues that should be the focus of management priorities. 5. The BHI outcomes can be used to identify both pan-Baltic and subregional scale management priorities and to illustrate the interconnectedness between goals linked by cumulative pressures. Hence, the information provided by the BHI tool and its further development will contribute towards the fulfilment of the UN Agenda 2030 and its Sustainability Development Goals.
  • Raateoja, Mika; Myrberg, Kai; Pitkänen, Heikki; Lehtoranta, Jouni (Finnish Environment Institute, 2015)
    SYKE Policy Brief