Browsing by Subject "metabolism"

Sort by: Order: Results:

Now showing items 1-20 of 37
  • Saari, Sini; Kemppainen, Esa; Tuomela, Tero; Oliveira, M.T.; Dufour, E.; Jacobs, H.T. (2019)
    The mitochondrial alternative oxidase, AOX, present in most eukaryotes apart from vertebrates and insects, catalyzes the direct oxidation of ubiquinol by oxygen, by-passing the terminal proton-motive steps of the respiratory chain. Its physiological role is not fully understood, but it is proposed to buffer stresses in the respiratory chain similar to those encountered in mitochondrial diseases in humans. Previously, we found that the ubiquitous expression of AOX from Ciona intestinalis in Drosophila perturbs the development of flies cultured under low-nutrient conditions (media containing only glucose and yeast). Here we tested the effects of a wide range of nutritional supplements on Drosophila development, to gain insight into the physiological mechanism underlying this developmental failure. On low-nutrient medium, larvae contained decreased amounts of triglycerides, lactate, and pyruvate, irrespective of AOX expression. Complex food supplements, including treacle (molasses), restored normal development to AOX-expressing flies, but many individual additives did not. Inhibition of AOX by treacle extract was excluded as a mechanism, since the supplement did not alter the enzymatic activity of AOX in vitro. Furthermore, antibiotics did not influence the organismal phenotype, indicating that commensal microbes were not involved. Fractionation of treacle identified a water-soluble fraction with low solubility in ethanol, rich in lactate and tricarboxylic acid cycle intermediates, which contained the critical activity. We propose that the partial activation of AOX during metamorphosis impairs the efficient use of stored metabolites, resulting in developmental failure. © 2019 The Authors. Journal of Experimental Zoology Part A: Ecological Genetics and Physiology Published by Wiley Periodicals, Inc.
  • Kuitunen, Essi (Helsingin yliopisto, 2019)
    Glutamine, the conditionally essential amino acid, is a major carbon and nitrogen carrier required for a range of cell functions, such as protein synthesis and maintaining redox balance. While healthy cells adjust their activities in response to glutamine availability, tumor cells display deregulated glutamine uptake and metabolism allowing quick proliferation and survival in cellular stress conditions. Hence, further knowledge of the glutamine sensing network is of interest. Utilizing Drosophila melanogaster, the roles of formerly identified glutamine sensing regulator candidates, Forkhead box O (FoxO), Super sex combs (Sxc), Spalt major (Salm) and Spalt-related (Salr), were explored. Drosophila is an efficient model organism for analyzing gene regulatory mechanisms, with its simple genome but conserved genes and metabolic pathways. Loss-of function and gain-of-function mutants of the candidates were cultured with/without glutamine, and their physiological response and gene expression changes were analyzed. The results show the glutamine intolerant phenotype of FoxO and Sxc deficiency, not dependent on altered food intake levels of larvae. However, glutamine intolerance of Salr and Salm deficiency was not observed. Moreover, we aimed to gain further insight to the roles of FoxO and Sxc in glutamine metabolism. Since amino acid catabolism produces ammonia, and glutamine metabolism plays a vital role in ammonia detoxification, we performed a pH-based measurement of foxo and sxc mutant larvae hemolymph on food with/without glutamine. However, we could not associate FoxO or Sxc with regulation of glutamine-derived ammonia clearance. In addition, we explored FoxO downstream regulator candidates. Putative promoter areas of Paics, Uro, Sesn, salr, Prat2 and Gdh were cloned into reporter vectors and the luciferase activity was analyzed under the expression of foxo. The results indicate that FoxO is a regulator of all of the 6 genes. Next we could utilize the here constructed plasmids to see whether the FoxO-mediated regulation is affected by altered glutamine levels in cell culture.
  • Kortteenniemi, Aaron; Ortega-Alonso, Alfredo; Javadi, Amir-Homayoun; Tolmunen, Tommi; Ali-Sisto, Toni; Kotilainen, Tuukka; Wikgren, Jan; Karhunen, Leila; Velagapudi, Vidya; Lehto, Soili M. (2020)
    Background Transcranial direct current stimulation (tDCS), a putative treatment for depression, has been proposed to affect peripheral metabolism. Metabolic products from brain tissue may also cross the blood-brain barrier, reflecting the conditions in the brain. However, there are no previous data regarding the effect of tDCS on circulating metabolites. Objective To determine whether five daily sessions of tDCS modulate peripheral metabolites in healthy adult men. Methods This double-blind, randomized controlled trial involved 79 healthy males (aged 20-40 years) divided into two groups, one receiving tDCS (2 mA) and the other sham stimulated. The anode was placed over the left dorsolateral prefrontal cortex and the cathode over the corresponding contralateral area. Venous blood samples were obtained before and after the first stimulation session, and after the fifth stimulation session. Serum levels of 102 metabolites were determined by mass spectrometry. The results were analysed with generalised estimating equations corrected for the family-wise error rate. In addition, we performed power calculations estimating sample sizes necessary for future research. Results TDCS-related variation in serum metabolite levels was extremely small and statistically non-significant. Power calculations indicated that for the observed variation to be deemed significant, samples sizes of up to 11,000 subjects per group would be required, depending on the metabolite of interest. Conclusion Our study found that five sessions of tDCS induced no major effects on peripheral metabolites among healthy men. These observations support the view of tDCS as a safe treatment that does not induce significant changes in the measured peripheral metabolites in healthy male subjects.
  • Packard, Chris J.; Boren, Jan; Taskinen, Marja-Riitta (2020)
    Elevations in plasma triglyceride are the result of overproduction and impaired clearance of triglyceride-rich lipoproteins-very low-density lipoproteins (VLDL) and chylomicrons. Hypertriglyceridemia is characterized by an accumulation in the circulation of large VLDL-VLDL1-and its lipolytic products, and throughout the VLDL-LDL delipidation cascade perturbations occur that give rise to increased concentrations of remnant lipoproteins and small, dense low-density lipoprotein (LDL). The elevated risk of atherosclerotic cardiovascular disease in hypertriglyceridemia is believed to result from the exposure of the artery wall to these aberrant lipoprotein species. Key regulators of the metabolism of triglyceride-rich lipoproteins have been identified and a number of these are targets for pharmacological intervention. However, a clear picture is yet to emerge as to how to relate triglyceride lowering to reduced risk of atherosclerosis.
  • Lamichane, Nicole (Helsingin yliopisto, 2019)
    Over the past years sugar consumption has seen great increases worldwide, together with a rise in the prevalence of metabolic diseases. There is a growing need for a comprehensive characterisation of the genes involved in sugar metabolism, yet the mechanisms by which cells sense and respond to sugars in vivo have remained incompletely understood. Here, I analyse members of a protein family best known for their regulation of differentiation during development with regards to their role in sugar metabolism. The Hairy and Enhancer of Split (HES) protein family are a group of basic helix-loop-helix (bHLH) transcription factors that function as major downstream effectors of the Notch signalling pathway. In mammals, the HES proteins have mostly been studied for their role in cell differentiation, but HES1 has been implicated in metabolic control. Drosophila has several transcription factors belonging to the HES family, including Hairy and seven bHLH transcription factors located in the Enhancer of split complex (E(spl)-C). The E(spl)-C bHLH transcription factors display high homology and are considered to be genetically redundant, and therefore little is known about their individual functions. The other HES family members in Drosophila have not previously been linked to metabolic regulation, but Hairy has been shown to repress the tricarboxylic acid cycle. In light of the findings implicating HES1 and Hairy in the regulation of metabolism, I systematically investigated the role of the HES transcription factors in sugar metabolism. By using the GAL4/UAS system in Drosophila melanogaster, I knocked down gene expression of each of the family members, and raised the flies on diets varying in sugar content to identify possible sugar intolerance phenotypes. Here, I show that knockdown of one of the E(spl)-C bHLH genes led to severe sugar intolerance that affected both survival and organismal growth, but did not alter the levels of circulating carbohydrates and storage lipids as measured with colorimetric assays and lipid staining. Furthermore, I identify the tissues in which this transcription factor functions to provide sugar tolerance. Using analysis of publically available chromatin-immunoprecipitation sequencing data coupled with quantitative RT-PCR, I uncover mTOR target Thor/4E-BP as a putative target gene. Additionally, I show that Hairy is similarly required for complete sugar tolerance, but that the mechanism differs from the E(spl)-C bHLH transcription factor. Hairy binds to and positively regulates expression of genes involved in glycolysis and the pentose phosphate pathway, suggestive of a cooperation with earlier known regulators of sugar sensing. In conclusion, I have shown that only two HES family members are involved in the regulation of sugar metabolism and that their regulatory mechanisms are distinct, implying that the HES family members have more diverse roles than previously assumed.
  • Kumpula, Linda S.; Makela, Sanna M.; Mäkinen, Ville-Petteri; Karjalainen, Anna; Liinamaa, Johanna M.; Kaski, Kimmo; Savolainen, Markku J.; Hannuksela, Minna L.; Ala-Korpela, Mika (2010)
  • Garn, Holger; Bahn, Sabine; Baune, Bernhard T.; Binder, Elisabeth B.; Bisgaard, Hans; Chatila, Talal A.; Chavakis, Triantafyllos; Culmsee, Carsten; Dannlowski, Udo; Gay, Steffen; Gern, James; Haahtela, Tari; Kircher, Tilo; Mueller-Ladner, Ulf; Neurath, Markus F.; Preissner, Klaus T.; Reinhardt, Christoph; Rook, Graham; Russell, Shannon; Schmeck, Bernd; Stappenbeck, Thaddeus; Steinhoff, Ulrich; van Os, Jim; Weiss, Scott; Zemlin, Michael; Renz, Harald (2016)
    Recent research indicates that chronic inflammatory diseases, including allergies and autoimmune and neuropsychiatric diseases, share common pathways of cellular and molecular dysregulation. It was the aim of the International von-Behring-Rontgen Symposium (October 16-18, 2014, in Marburg, Germany) to discuss recent developments in this field. These include a concept of biodiversity; the contribution of urbanization, lifestyle factors, and nutrition (eg, vitamin D); and new mechanisms of metabolic and immune dysregulation, such as extracellular and intracellular RNAs and cellular and mitochondrial stress. Epigenetic mechanisms contribute further to altered gene expression and therefore to the development of chronic inflammation. These novel findings provide the foundation for further development of preventive and therapeutic strategies.
  • Tammimäki, Anne; Aonurm-Helm, Anu; Männistö, Pekka T. (2018)
    1.Catechol-O-methyltransferase (COMT) is involved in the O-methylation of l-DOPA, dopamine, and other catechols. The enzyme is expressed in two isoforms: soluble (S-COMT), which resides in the cytoplasm, and membrane-bound (MB-COMT), which is anchored to intracellular membranes. 2.To obtain specific information on the functions of COMT isoforms, we studied how a complete MB-COMT deficiency affects the total COMT activity in the body, peripheral l-DOPA levels, and metabolism after l-DOPA (10mg kg(-1)) plus carbidopa (30mg kg(-1)) administration by gastric tube in wild-type (WT) and MB-COMT-deficient mice. l-DOPA and 3-O-methyl-l-DOPA (3-OMD) levels were assayed in plasma, duodenum, and liver. 3.We showed that the selective lack of MB-COMT did not alter the total COMT activity, COMT enzyme kinetics, l-DOPA levels, or the total O-methylation of l-DOPA but delayed production of 3-OMD in plasma and peripheral tissues.
  • Taskinen, Marja-Riitta; Packard, Chris J.; Boren, Jan (2019)
    Consumption of fructose, the sweetest of all naturally occurring carbohydrates, has increased dramatically in the last 40 years and is today commonly used commercially in soft drinks, juice, and baked goods. These products comprise a large proportion of the modern diet, in particular in children, adolescents, and young adults. A large body of evidence associate consumption of fructose and other sugar-sweetened beverages with insulin resistance, intrahepatic lipid accumulation, and hypertriglyceridemia. In the long term, these risk factors may contribute to the development of type 2 diabetes and cardiovascular diseases. Fructose is absorbed in the small intestine and metabolized in the liver where it stimulates fructolysis, glycolysis, lipogenesis, and glucose production. This may result in hypertriglyceridemia and fatty liver. Therefore, understanding the mechanisms underlying intestinal and hepatic fructose metabolism is important. Here we review recent evidence linking excessive fructose consumption to health risk markers and development of components of the Metabolic Syndrome.
  • Ollila, Meri-Maija; Kiviniemi, Antti; Stener-Victorin, Elisabet; Tulppo, Mikko; Puukka, Katri; Tapanainen, Juha; Franks, Stephen; Morin-Papunen, Laure; Piltonen, Terhi (2019)
    OBJECTIVES: Previous studies of women in their 20s and 30s have reported impaired autonomic function in women with polycystic ovary syndrome (PCOS). We aimed to study, for the first time, whether PCOS is associated with impaired cardiac autonomic function independent of metabolic and hormonal status in their late reproductive years. DESIGN: A prospective Northern Finland Birth Cohort 1966 (NFBC1966) study including 5889 women born in 1966 and followed through the age of 46. At that age, n=3706/5123 women (72%) answered the postal questionnaires and n=3280/5123 women (64%) participated in the clinical examination. SETTING: General community. PARTICIPANTS: The sample included women presenting both irregular menses (oligomenorrhoea or amenorrhoea) and hirsutism at age 31 (n=125) or with formally diagnosed PCOS by age 46 (n=181) and women without PCOS symptoms or diagnosis (n=1577). PRIMARY AND SECONDARY OUTCOME MEASURES: Heart rate variability parameters: the root mean square of successive R-R differences (rMSSD), spectral power densities (LF: low frequency and HF: high frequency) and baroreflex sensitivity (BRS). RESULTS: We found that parasympathetic activity (assessed by rMSSD: 19.5 (12.4; 31.9) vs 24.3 (16.1; 34.8) ms, p=0.004 and HF: 172 (75; 399) vs 261 (112; 565) ms(2), p=0.002) and BRS (6.13±3.12 vs 6.99±3.52 ms/mm Hg, p=0.036) were lower in women with PCOS compared with the controls. However, in the multivariate regression analysis, PCOS, body mass index and the free androgen index did not significantly associate with rMSSD, whereas blood pressure, insulin resistance and triglycerides did. CONCLUSIONS: We report here for the first time that late reproductive-aged women with PCOS display impaired cardiac autonomic function manifested as decreased vagal activity. Metabolic status, rather than hyperandrogenaemia and PCOS per se, was the strongest contributing factor. Given the link between cardiac morbidity and impaired autonomic function, the findings underline the importance of screening and treating metabolic abnormalities early on in women with PCOS.
  • Costabile, Adele; Bergillos-Meca, Triana; Rasinkangas, Pia; Korpela, Katri; de Vos, Willem M.; Gibson, Glenn R. (2017)
    Background: The aging process leads to a potential decline in immune function and adversely affects the gut microbiota. To date, many in vitro and in vivo studies focused on the application of synbiotics (prebiotics combined with probiotics) as a promising dietary approach to affect gut microbiota composition and improved functioning of the immune system. However, studies using synbiotic preparations often have the limitation that it remains unclear whether any effect observed is a result of the prebiotic or probiotic or a synergistic effect of the combined supplement. Objectives: We investigated the effects of a probiotic Lactobacillus rhamnosus GG and pilus-deficient L. rhamnosus GG-PB12 combined with Promitor (TM) Soluble Corn Fiber (SCF, a candidate prebiotic) on fecal microbiota, metabolism, immunity, and blood lipids in healthy elderly persons. A prospective, double-blind, placebo controlled, randomized, single-centered, crossover study in 40 healthy elderly subjects (aged 60-80 years) was carried out. Volunteers were randomized to consume either probiotic and prebiotic as synbiotic, prebiotic or placebo (maltodextrin) during 3 weeks. Three-week washout periods separated all the treatments. We assessed effects upon blood lipids, glucose, cytokines, natural killer (NK) cell activity, phenotype, and intestinal microbiota composition. SCF decreased IL-6, which was not observed with the synbiotics. Results: Consumption of L. rhamnosus GG combined with SCF increased NK cell activity compared to baseline in females and the older group. In the fecal microbiota analyses, the strongest community shifts were due to L. rhamnosus GG combined with SCF and SCF treatments. L. rhamnosus GG combined with SCF and L. rhamnosus GG-PB12 combined with SCF significantly increased the genus Parabacteroides. L. rhamnosus GG combined with SCF and SCF increased concentrations of Ruminococcaceae Incertae Sedis. Oscillospira and Desulfovibrio slightly decreased in the L. rhamnosus GG combined with SCF group, whereas Desulfovibrio decreased also in the L. rhamnosus GG-PB12 combined with SCF group. L. rhamnosus GG combined with SCF reduced total cholesterol and LDL-cholesterol in volunteers with initially elevated concentrations. C-reactive protein significantly decreased during L. rhamnosus GG-PB12 combined with SCF intervention compared to baseline. Conclusion: In conclusion, the synbiotic combination of L. rhamnosus GG with SCF showed a tendency to promote innate immunity by increasing NK cell activity in elderly women and in 70 to 80-year-old volunteers and decreased TC and LDL-c in hyper-cholesterolemic patients. In addition, L. rhamnosus GG-PB12 combined with SCF demonstrated an increase in NK cell activity compared to SCF alone in older volunteers. We also found significant positive effects on the immune response, evidenced by a decrease of the pro-inflammatory cytokine IL-6. Therefore, dietary intervention with L. rhamnosus GG combined with SCF could be of importance in elderly as an attractive option for enhancement of both the microbial and immune systems.
  • Kyrylenko, Petro (Helsingfors universitet, 2016)
    A natural sweetener from Stevia rebaudiana has the potential to reduce calorie intake. Recent data suggest that glycosides from Stevia display favorable pharmacological properties for the metabolic syndrome. Skeletal muscle constitutes a major extrahepatic tissue responsible for glucose utilization. We studied whether steviol can modulate glucose uptake in L6 myocytes. Signaling targets that are central in regulating cellular glucose metabolism were assessed with western blotting. Our data show that the highest concentration of steviol tested decreased slightly and statistically significantly the glucose uptake rate in insulin-stimulated muscle cells. This was supported by western blotting data from targets Akt and GSK-3β. Therefore, our data suggest that direct exposure of myocytes to steviol causes insulin resistance. The results can aid in planning further experiments to understand the pharmacological effects of Stevia-derived products. This would ultimately enhance our understanding of the mechanism behind insulin resistance and be used in future drug development.
  • Sanz, Dafne Jacome; Raivola, Juuli; Karvonen, Hanna; Arjama, Mariliina; Barker, Harlan; Murumägi, Astrid; Ungureanu, Daniela (2021)
    Simple Summary Ovarian cancer (OC) is known for its poor prognosis, due to the absence of reliable biomarkers and its late diagnosis, since the early-stage disease is almost asymptomatic. Lipid metabolism plays an important role in OC progression due to the development of omental metastasis in the abdominal cavity. The aim of our study was to assess the therapeutic role of various enzymes involved in lipid metabolism regulation or synthesis, in different subtypes of OC represented by cell lines as well as patient-derived cancer cell cultures (PDCs). We show that proprotein convertase subtilisin/kexin type 9 (PCSK9), a cholesterol-regulating enzyme, plays a pro-survival role in OC and targeting its expression impairs cancer cell growth. We also tested a small library of metabolic and mTOR-targeting drugs to identify drug vulnerabilities specific to various subtypes of OC. Our results show that in OC cell lines and PDCs the second generation of mTOR inhibitors such as AZD8055, vistusertib, dactolisib and sapanisertib, have higher cytotoxic activity compared to the first generation mTOR inhibitors such as rapalogs. These results suggest that, in the era of precision medicine, it is possible to target the metabolic pathway in OC and identify subtype-specific drug vulnerabilities that could be advanced to the clinic. Background: Dysregulated lipid metabolism is emerging as a hallmark in several malignancies, including ovarian cancer (OC). Specifically, metastatic OC is highly dependent on lipid-rich omentum. We aimed to investigate the therapeutic value of targeting lipid metabolism in OC. For this purpose, we studied the role of PCSK9, a cholesterol-regulating enzyme, in OC cell survival and its downstream signaling. We also investigated the cytotoxic efficacy of a small library of metabolic (n = 11) and mTOR (n = 10) inhibitors using OC cell lines (n = 8) and ex vivo patient-derived cell cultures (PDCs, n = 5) to identify clinically suitable drug vulnerabilities. Targeting PCSK9 expression with siRNA or PCSK9 specific inhibitor (PF-06446846) impaired OC cell survival. In addition, overexpression of PCSK9 induced robust AKT phosphorylation along with increased expression of ERK1/2 and MEK1/2, suggesting a pro-survival role of PCSK9 in OC cells. Moreover, our drug testing revealed marked differences in cytotoxic responses to drugs targeting metabolic pathways of high-grade serous ovarian cancer (HGSOC) and low-grade serous ovarian cancer (LGSOC) PDCs. Our results show that targeting PCSK9 expression could impair OC cell survival, which warrants further investigation to address the dependency of this cancer on lipogenesis and omental metastasis. Moreover, the differences in metabolic gene expression and drug responses of OC PDCs indicate the existence of a metabolic heterogeneity within OC subtypes, which should be further explored for therapeutic improvements.
  • Kuchenbaecker, K.B.; McGuffog, L.; Barrowdale, D.; Lee, Andrew; Soucy, P.; Dennis, J.; Domchek, S.M.; Robson, M.; Spurdle, A.B.; Ramus, S.J.; Mavaddat, N.; Terry, M.B.; Neuhausen, S.L.; Schmutzler, R.K.; Simard, J.; Pharoah, P.D.P.; Offit, K.; Couch, F.J.; Chenevix-Trench, G.; Easton, D.F.; Antoniou, A.C.; Healey, S.; Lush, M.; Hamann, U.; Southey, M.; John, E.M.; Chung, W.K.; Daly, M. B.; Buys, S.S.; Goldgar, D.E.; Dorfling, C.M.; van Rensburg, E.J.; Ding, Y.C.; Ejlertsen, B.; Gerdes, A.-M.; Hansen, T.V.O.; Slager, S.; Hallberg, E.; Benitez, J.; Osorio, A.; Cohen, N.; Lawler, W.; Weitzel, J.N.; Peterlongo, P.; Pensotti, V.; Dolcetti, R.; Barile, M.; Aittomäki, K.; Nevanlinna, H.; Rantala, J. (2017)
    Background: Genome-wide association studies (GWAS) have identified 94 common single-nucleotide polymorphisms (SNPs) associated with breast cancer (BC) risk and 18 associated with ovarian cancer (OC) risk. Several of these are also associated with risk of BC or OC for women who carry a pathogenic mutation in the high-risk BC and OC genes BRCA1 or BRCA2. The combined effects of these variants on BC or OC risk for BRCA1 and BRCA2 mutation carriers have not yet been assessed while their clinical management could benefit from improved personalized risk estimates. Methods: We constructed polygenic risk scores (PRS) using BC and OC susceptibility SNPs identified through population-based GWAS: for BC (overall, estrogen receptor [ER]-positive, and ER-negative) and for OC. Using data from 15 252 female BRCA1 and 8211 BRCA2 carriers, the association of each PRS with BC or OC risk was evaluated using a weighted cohort approach, with time to diagnosis as the outcome and estimation of the hazard ratios (HRs) per standard deviation increase in the PRS. Results: The PRS for ER-negative BC displayed the strongest association with BC risk in BRCA1 carriers (HR = 1.27, 95% confidence interval [CI] = 1.23 to 1.31, P = 8.2 × 10-53). InBRCA2 carriers, the strongest association with BC risk was seen for the overall BCPRS (HR = 1.22, 95% CI = 1.17 to 1.28, P = 7.2 × 10-20). The OC PRS was strongly associated with OC risk for both BRCA1 and BRCA2 carriers. These translate to differences in absolute risks (more than 10% in each case) between the top and bottom deciles of the PRS distribution; for example, the OC risk was 6% by age 80 years for BRCA2 carriers at the 10th percentile of the OC PRS compared with 19% risk for those at the 90th percentile of PRS. Conclusions: BC and OC PRS are predictive of cancer risk in BRCA1 and BRCA2 carriers. Incorporation of the PRS into risk prediction models has promise to better inform decisions on cancer risk management. © The Author 2017.
  • Mihaylova, Maria M.; Cheng, Chia-Wei; Cao, Amanda Q.; Tripathi, Surya; Mana, Miyeko D.; Bauer-Rowe, Khristian E.; Abu-Remaileh, Monther; Clavain, Laura; Erdemir, Aysegul; Lewis, Caroline A.; Freinkman, Elizaveta; Dickey, Audrey S.; La Spada, Albert R.; Huang, Yanmei; Bell, George W.; Deshpande, Vikram; Carmeliet, Peter; Katajisto, Pekka; Sabatini, David M.; Yilmaz, Ömer H. (2018)
    Diet has a profound effect on tissue regeneration in diverse organisms, and low caloric states such as intermittent fasting have beneficial effects on organismal health and age-associated loss of tissue function. The role of adult stem and progenitor cells in responding to short-term fasting and whether such responses improve regeneration are not well studied. Here we show that a 24 hr fast augments intestinal stem cell (ISC) function in young and aged mice by inducing a fatty acid oxidation (FAO) program and that pharmacological activation of this program mimics many effects of fasting. Acute genetic disruption of Cpt1a, the rate-limiting enzyme in FAO, abrogates ISC-enhancing effects of fasting, but long-term Cpt1a deletion decreases ISC numbers and function, implicating a role for FAO in ISC maintenance. These findings highlight a role for FAO in mediating pro-regenerative effects of fasting in intestinal biology, and they may represent a viable strategy for enhancing intestinal regeneration.
  • eQTLGen Consortium (2018)
    Understanding the difference in genetic regulation of gene expression between brain and blood is important for discovering genes for brain-related traits and disorders. Here, we estimate the correlation of genetic effects at the top-associated cis-expression or -DNA methylation (DNAm) quantitative trait loci (cis-eQTLs or cis-mQTLs) between brain and blood (r b ). Using publicly available data, we find that genetic effects at the top cis-eQTLs or mQTLs are highly correlated between independent brain and blood samples (r b = 0.70 for cis-eQTLs and r ^ b = 0.78 for cis-mQTLs). Using meta-analyzed brain cis-eQTL/mQTL data (n = 526 to 1194), we identify 61 genes and 167 DNAm sites associated with four brain-related phenotypes, most of which are a subset of the discoveries (97 genes and 295 DNAm sites) using data from blood with larger sample sizes (n = 1980 to 14,115). Our results demonstrate the gain of power in gene discovery for brain-related phenotypes using blood cis-eQTL/mQTL data with large sample sizes. © 2018 The Author(s).
  • Kainu, Ville; Hermansson, Martin; Somerharju, Pentti (2010)
  • Mannisto, Ville T.; Simonen, Marko; Soininen, Pasi; Tiainen, Mika; Kangas, Antti J.; Kaminska, Dorota; Venesmaa, Sari; Kakela, Pirjo; Karja, Vesa; Gylling, Helena; Ala-Korpela, Mika; Pihlajamaki, Jussi (2014)
  • Muha, Villo; Williamson, Ritchie; Hills, Rachel; McNeilly, A.D.; McWilliams, T.G.; Alonso, Jana; Schimpl, Marianne; Leney, Aneika C.; Heck, Albert J.R.; Sutherland, Calum; Read, Kevin D.; McCrimmon, Rory J.; Brooks, S.P.; Van Aalten, Daan M.F. (2019)
    O-GlcNAcylation is an abundant post-translational modification in the nervous system, linked to both neurodevelopmental and neurodegenerative disease. However, the mechanistic links between these phenotypes and site-specific O-GlcNAcylation remain largely unexplored. Here, we show that Ser517 O-GlcNAcylation of the microtubule-binding protein Collapsin Response Mediator Protein-2 (CRMP2) increases with age. By generating and characterizing a Crmp2S517A knock-in mouse model, we demonstrate that loss of O-GlcNAcylation leads to a small decrease in body weight and mild memory impairment, suggesting that Ser517 O-GlcNAcylation has a small but detectable impact on mouse physiology and cognitive function. © 2019 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original author and source are credited.
  • Wasenius, Niko S.; Isomaa, Bo A.; Östman, Bjarne; Söderström, Johan; Forsen, Björn; Lahti, Kaj; Hakaste, Liisa; Eriksson, Johan G.; Groop, Leif; Hansson, Ola; Tuomi, Tiinamaija (2020)
    Introduction To investigate the effect of an exercise prescription and a 1-year supervised exercise intervention, and the modifying effect of the family history of type 2 diabetes (FH), on long-term cardiometabolic health. Research design and methods For this prospective randomized trial, we recruited non-diabetic participants with poor fitness (n=1072, 30-70 years). Participants were randomly assigned with stratification for FH either in the exercise prescription group (PG, n=144) or the supervised exercise group (EG, n=146) group and compared with a matched control group from the same population study (CON, n=782). The PG and EG received exercise prescriptions. In addition, the EG attended supervised exercise sessions two times a week for 60 min for 12 months. Cardiometabolic risk factors were measured at baseline, 1 year, 5 years, and 6 years. The CON group received no intervention and was measured at baseline and 6 years. Results The EG reduced their body weight, waist circumference, diastolic blood pressure, and low-density lipoprotein-cholesterol (LDL-C) but not physical fitness (p=0.074) or insulin or glucose regulation (p>0.1) compared with the PG at 1 year and 5 years (p Conclusions Low-cost physical activity programs have long-term beneficial effects on cardiometabolic health regardless of the FH of diabetes. Given the feasibility and low cost of these programs, they should be advocated to promote cardiometabolic health.