Browsing by Subject "metylaatio"

Sort by: Order: Results:

Now showing items 1-2 of 2
  • Karell, Pauliina (Helsingin yliopisto, 2018)
    Epigenetiikka on perinnöllisyystieteen ala, jossa tutkitaan ulkoisesti mitattavia ominaisuuksia ilmiasuja, joiden muutokset ilmenevät DNA-juosteen kemiallisina muutoksina. Nämä muutokset eivät ole periytyviä, kuten ihmisen DNA, vaan muokkautuvat ympäristön vaikutuksesta. Metylaatio on eräs epigeneettisistä muutoksista, jotka vaikuttavat geenisäätelyyn. Epigenetiikan avulla on pyritty selittämään eroja muun muassa samanmunaisten kaksosten välillä, ja tutkijoiden mielenkiinto on kohdistunut erityisesti metylaatioon sen helpon mitattavuuden ansiosta. Ihmisiltä erilaisia metyaatioalueita perimästä on kartoitettu noin 400 000, joista osan on tiedetty liittyvän esimerkiksi syövän ilmenemiseen. Tämä tutkielma keskittyy epigeneettisen aineiston tilastolliseen mallinnukseen kaksosaineistossa. Tutkittavaksi ilmiasuksi on valittu ikä, sillä iän on todettu olevan yhteydessä erilaisiin metylaatiomutooksiin. Monissa epigeneettisissä tutkimuksissa käytetään usein kaksosaineistoja, sillä samanmunaiset kaksoset jakavat täysin identtisen perimän keskenään ja usein myös yhteisen kasvuympäristön. Kaksosaineistoa käyttämällä saadaan usein kontrolloitua ympäristöstä johtuvaa vaihtelua, mutta tilastollinen mallinnus vaatii havaintojen riippuvuuden huomioisen. Metylaatioaineistossa saattaa esiintyä myös paljon keskiarvosta poikkeavia havaintoja, jolloin kyseessä on paksuhäntäisestä jakaumasta. Paksuhäntäisissä jakaumissa poikkeavien havaintojen vaikutusta pyritään pienentämään käyttämällä robusteja tilastollisia menetelmiä, jolloin tulokset ovat paremmin yleistettävissä yleiseen väestöön. Tässä tutkielmassa on huomioitu tilastollisessa mallinnuksessa sekä havaintojen riippuvuus että paksuhäntäisyys käyttämällä lineaarista t-sekamallia, sillä t-jakauma on robustimpi vaihtoehto aineiston jakaumaoletukseksi kuin perinteinen normaalijakauma. Lineaarisen t-sekamallin parametrien estimoiminen on toteutettu bayesiläisellä päättelyllä, jossa estimoituja parametreja voidaan tarkastella todennäköisyysjakaumina. Bayesiläisen tilastotieteessä aineistosta tehdään päätelmiä käyttämällä erilaisia todennäköisyysmalleja, mikä mahdollistaa monipuolisen ja joustavan mallimäärittelyn. Käyttämällä erilaista prioritietoa parametrijakaumista, mallin tuloksia voidaan arvioida joustavasti ja monipuolisesti. Tässä tutkielmassa lineaarisen t-sekamallin parametreille on määrätty erilaisia jakaumaoletuksia, jotta perhettä ja kaksosuutta on kyetty mallintamaan riittävästi. Varsinainen estimoitu on toteutettu rakentamalla stokastinen Markovin ketju, jota kutsutaan myös Gibbsin otannaksi. Tässä tutkielmassa selvitettiin iän vaikutusta kolmee erilaiseen metylaatikohtaan ja havaittiin, että kaikissa kolmessa metylaatiokohdassa iän kasvaessa myös metyloituneisuus kasvoi. Eräs kolmesta metylaaatioalueesta on erityisen mielenkiintoinen, sillä vastaavissa tutkimuksissa on saatu samankaltaisia tuloksia ja kyseinen metylaatioalue sijaitsee PDE4C-geeniä ilmentävässä alueessa. Kyseinen geeni vaikuttaa monien muiden solujen aktiivisuuten tuottamalla proteiinia, joka välittää signaaleja solun ulkopuolelle.
  • Tuovinen, Terhi Marika (Helsingin yliopisto, 2022)
    Objectives: Sleep difficulties are more frequent and have a wide effect on health and mental health. Epigenetics studies the complex interplay of genetics and environmental factors, thus helping to locate networks relating to sleep difficulties. This thesis investigates how epigenetic markers, discovered in 2019 in Health 2000 data, that were associated with sleep difficulties associated with DILGOM 2007 data’s wellbeing factors. We hypothesize that they relate to sleep and mood variables also in this data. Methods: DILGOM 2007 data is a part of THLs FINRISKI 2007 population data and it was originally collected for metabolic syndrome research. The sample size that included methylation data was 511 with ages ranging from 25 to 74. This thesis compares 203 differentially methylated positions (DMP), found in both data sets, to wellbeing variables. At first, correlations were examined between systemic methylation levels and fenotype variables. Then, correlations of white blood cell populations to psychosocial variables were examined. Lastly 5 DMPs were chosen based on previous research for further examination, and regression analyses were conducted to model their methylations. Results and conclusions: In this data DMPs were not significantly related to sleep or mood variables anymore as previously assumed. Instead, DMPs strongly correlated with BMI in the whole data. In white blood cell populations CD8T significantly correlated with psychosocial burden. Additionally antidepressants, BMI and CD8T cells explained the variance of methylation in genes chosen for further examination. High BMI in the data seems to mediate the results reflecting underlying low grade inflammation. Epigenetic markers relating to sleep difficulties could reflect low grade inflammation, which is either caused by sleep difficulties or manifests as sleep difficulties.