Browsing by Subject "microRNAs"

Sort by: Order: Results:

Now showing items 1-7 of 7
  • Konovalova, Julia; Gerasymchuk, Dmytro; Arroyo, Sergio Navarette; Kluske, Sven; Mastroianni, Francesca; Pereyra, Alba Vargas; Domanskyi, Andrii (2021)
    Mesencephalic astrocyte derived neurotrophic factor (MANF) and cerebral dopamine neurotrophic factor (CDNF) are novel evolutionary conserved trophic factors, which exhibit cytoprotective activity via negative regulation of unfolded protein response (UPR) and inflammation. Despite multiple reports demonstrating detrimental effect of MANF/CDNF downregulation, little is known about the control of their expression. miRNAs-small non-coding RNAs-are important regulators of gene expression. Their dysregulation was demonstrated in multiple pathological processes and their ability to modulate levels of other neurotrophic factors, glial cell line-derived neurotrophic factor (GDNF) and brain-derived neurotrophic factor (BDNF), was previously reported. Here, for the first time we demonstrated direct regulation of MANF and CDNF by miRNAs. Using bioinformatic tools, reporter assay and analysis of endogenous MANF and CDNF, we identified that miR-144 controls MANF expression, and miR-134 and miR-141 downregulate CDNF levels. We also demonstrated that this effect is human-specific and is executed via predicted binding sites of corresponding miRNAs. Finally, we found that miR-382 suppressed hCDNF expression indirectly. In conclusion, we demonstrate for the first time direct regulation of MANF and CDNF expression by specific miRNAs, despite the fact their binding sites are not strongly evolutionary conserved. Furthermore, we demonstrate a functional effect of miR-144 mediated regulation of MANF on ER stress response markers. These findings emphasize that (1) prediction of miRNA targets based on evolutionary conservation may miss biologically meaningful regulatory pairs; and (2) interpretation of miRNA regulatory effects in animal models should be cautiously validated.
  • Wang, Xiao-Jun; Gao, Jing; Wang, Zhuo; Yu, Qin (2021)
    Background Lung adenocarcinoma (LUAD) is a common lung cancer with a high mortality, for which microRNAs (miRNAs) play a vital role in its regulation. Multiple messenger RNAs (mRNAs) may be regulated by miRNAs, involved in LUAD tumorigenesis and progression. However, the miRNA-mRNA regulatory network involved in LUAD has not been fully elucidated. Methods Differentially expressed miRNAs and mRNA were derived from the Cancer Genome Atlas (TCGA) dataset in tissue samples and from our microarray data in plasma (GSE151963). Then, common differentially expressed (Co-DE) miRNAs were obtained through intersected analyses between the above two datasets. An overlap was applied to confirm the Co-DEmRNAs identified both in targeted mRNAs and DEmRNAs in TCGA. A miRNA-mRNA regulatory network was constructed using Cytoscape. The top five miRNA were identified as hub miRNA by degrees in the network. The functions and signaling pathways associated with the hub miRNA-targeted genes were revealed through Gene Ontology (GO) analysis and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway. The key mRNAs in the protein-protein interaction (PPI) network were identified using the STRING database and CytoHubba. Survival analyses were performed using Gene Expression Profiling Interactive Analysis (GEPIA). Results The miRNA-mRNA regulatory network consists of 19 Co-DEmiRNAs and 760 Co-DEmRNAs. The five miRNAs (miR-539-5p, miR-656-3p, miR-2110, let-7b-5p, and miR-92b-3p) in the network were identified as hub miRNAs by degrees (>100). The 677 Co-DEmRNAs were targeted mRNAs from the five hub miRNAs, showing the roles in the functional analyses of the GO analysis and KEGG pathways (inclusion criteria: 836 and 48, respectively). The PPI network and Cytoscape analyses revealed that the top ten key mRNAs were NOTCH1, MMP2, IGF1, KDR, SPP1, FLT1, HGF, TEK, ANGPT1, and PDGFB. SPP1 and HGF emerged as hub genes through survival analysis. A high SPP1 expression indicated a poor survival, whereas HGF positively associated with survival outcomes in LUAD. Conclusion This study investigated a miRNA-mRNA regulatory network associated with LUAD, exploring the hub miRNAs and potential functions of mRNA in the network. These findings contribute to identify new prognostic markers and therapeutic targets for LUAD patients in clinical settings.
  • Kangas, Reeta; Morsiani, Cristina; Pizza, Grazia; Lanzarini, Catia; Aukee, Pauliina; Kaprio, Jaakko; Sipilä, Sarianna; Franceschi, Claudio; Kovanen, Vuokko; Laakkonen, Eija K.; Capri, Miriam (2018)
    Tissue-specific effects of 17 beta-estradiol are delivered via both estrogen receptors and microRNAs (miRs). Menopause is known to affect the whole-body fat distribution in women. This investigation aimed at identifying menopause-and hormone replacement therapy (HRT)-associated miR profiles and miR targets in subcutaneous abdominal adipose tissue and serum from the same women. A discovery phase using array technology was performed in 13 women, including monozygotic twin pairs discordant for HRT and premenopausal young controls. Seven miRs, expressed in both adipose tissue and serum, were selected for validation phase in 34 women from a different cohort. An age/menopause-related increase of miRs-16-5p, -451a, -223-3p, -18a-5p, -19a-3p,-486-5p and -363-3p was found in the adipose tissue, but not in serum. MiR-19a-3p, involved in adipocyte development and estrogen signaling, resulted to be higher in HRT users in comparison with non-users. Among the identified targets, AKT1, BCL-2 and BRAF proteins showed lower expression in both HRT and No HRT users in comparison with premenopausal women. Unexpectedly, ESR1 protein expression was not modified although its mRNA was lower in No HRT users compared to premenopausal women and HRT users. Thus, both HRT and menopause appear to affect adipose tissue homeostasis via miR-mediated mechanism.
  • Yang, Kun; Wen, Xiaopeng; Mudunuri, Suresh B.; Sablok, Gaurav (2019)
    microRNAs (miRNAs) play an important role as key regulators controlling the post-transcriptional events in plants across development, abiotic and biotic stress, tissue polarity and also in defining the evolutionary basis of the origin of the post-transcriptional machinery. Identifying patterns of regulated and co-regulated small RNAs, in particular miRNAs and their sequence variants with the availability of next generation sequencing approaches has widely demonstrated the role of miRNAs and their temporal regulation in maintaining plant development and their response to stress conditions. Although the role of canonical miRNAs has been widely explored and functional diversity is revealed, those works for isomiRs are still limited and urgent to be carried out across plants. This relative lack of information with respect to isomiRs might be attributed to the non-availability of large-scale detection of isomiRs across wide plant species. In the present research, we addressed this by developing Plant isomiR Atlas, which provides large-scale detection of isomiRs across 23 plant species utilizing 677 smallRNAs datasets and reveals a total of 98,374 templated and non-templated isomiRs from 6,167 precursors. Plant isomiR Atlas provides several visualization features such as species specific isomiRs, isomiRs and canonical miRNAs overlap, terminal modification classifications, target identification using psRNATarget and TargetFinder and also canonical miRNAs: target interactions. Plant isomiR Atlas will play a key role in understanding the regulatory nature of miRNAome and will accelerate to understand the functional role of isomiRs. ONE SENTENCE SUMMARY Plant isomiR Atlas will play a key role in understanding the regulatory nature of miRNAome and will accelerate the understanding and diversity of functional targets of plants isomiRs.
  • Zheleznyakova, GY; Piket, E; Needhamsen, M; Hagemann-Jensen, M; Ekman, D; Han, YN; James, T; Khademi, M; Al Nimer, F; Scicluna, P; Huang, J; Kockum, I; Faridani, OR; Olsson, T; Piehl, F; Jagodic, M (2021)
    Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease affecting the central nervous system (CNS). Small non-coding RNAs (sncRNAs) and, in particular, microRNAs (miRNAs) have frequently been associated with MS. Here, we performed a comprehensive analysis of all classes of sncRNAs in matching samples of peripheral blood mononuclear cells (PBMCs), plasma, cerebrospinal fluid (CSF) cells, and cell-free CSF from relapsing-remitting (RRMS, n = 12 in relapse and n = 11 in remission) patients, secondary progressive (SPMS, n = 6) MS patients, and noninflammatory and inflammatory neurological disease controls (NINDC, n = 11; INDC, n = 5). We show widespread changes in miRNAs and sncRNA-derived fragments of small nuclear, nucleolar, and transfer RNAs. In CSF cells, 133 out of 133 and 115 out of 117 differentially expressed sncRNAs were increased in RRMS relapse compared to remission and RRMS compared to NINDC, respectively. In contrast, 65 out of 67 differentially expressed PBMC sncRNAs were decreased in RRMS compared to NINDC. The striking contrast between the periphery and CNS suggests that sncRNA-mediated mechanisms, including alternative splicing, RNA degradation, and mRNA translation, regulate the transcriptome of pathogenic cells primarily in the CNS target organ.
  • Heymans, Stephane; Eriksson, Urs; Lehtonen, Jukka; Cooper, Leslie T. (2016)
    Myocarditis is a diverse group of heart-specific immune processes classified by clinical and histopathological manifestations. Up to 40% of dilated cardiomyopathy is associated with inflammation or viral infection. Recent experimental studies revealed complex regulatory roles for several microribonucleic acids and T-cell and macrophage subtypes. Although the prevalence of myocarditis remained stable between 1990 and 2013 at about 22 per 100,000 people, overall mortality from cardiomyopathy and myocarditis has decreased since 2005. The diagnostic and prognostic value of cardiac magnetic resonance has increased with new, higher-sensitivity sequences. Positron emission tomography has emerged as a useful tool for diagnosis of cardiac sarcoidosis. The sensitivity of endomyocardial biopsy may be increased, especially in suspected sarcoidosis, by the use of electrogram guidance to target regions of abnormal signal. Investigational treatments on the basis of mechanistic advances are entering clinical trials. Revised management recommendations regarding athletic participation after acute myocarditis have heightened the importance of early diagnosis. (C) 2016 by the American College of Cardiology Foundation.
  • Sablok, Gaurav; Yang, Kun; Chen, Rui; Wen, Xiaopeng (2017)
    Among several smallRNAs classes, microRNAs play an important role in controlling the post-transcriptional events. Next generation sequencing has played a major role in extending the landscape of miRNAs and revealing their spatio-temporal roles in development and abiotic stress. Lateral evolution of these smallRNAs classes have widely been seen with the recently emerging knowledge on tRNA derived smallRNAs. In the present perspective, we discussed classification, identification and roles of tRNA derived smallRNAs across plants and their potential involvement in abiotic and biotic stresses.