Browsing by Subject "microbiome"

Sort by: Order: Results:

Now showing items 1-20 of 26
  • Haahtela, Tari (2019)
    Biodiversity hypothesis states that contact with natural environments enriches the human microbiome, promotes immune balance and protects from allergy and inflammatory disorders. We are protected by two nested layers of biodiversity, microbiota of the outer layer (soil, natural waters, plants, animals) and inner layer (gut, skin, airways). The latter inhabits our body and is colonized from the outer layer. Explosion of human populations along with cultural evolution is profoundly changing our environment and lifestyle. Adaptive immunoregulatory circuits and dynamic homeostasis are at stake in the newly emerged urban surroundings. In allergy, and chronic inflammatory disorders in general, exploring the determinants of immunotolerance is the key for prevention and more effective treatment. Loss of immunoprotective factors, derived from nature, is a new kind of health risk poorly acknowledged until recently. The paradigm change has been implemented in the Finnish allergy programme (2008-2018), which emphasized tolerance instead of avoidance. The first results are promising, as allergy burden has started to reduce. The rapidly urbanizing world is facing serious biodiversity loss with global warming, which are interconnected. Biodiversity hypothesis of health and disease has societal impact, for example, on city planning, food and energy production and nature conservation. It has also a message for individuals for health and well-being: take nature close, to touch, eat, breathe, experience and enjoy. Biodiverse natural environments are dependent on planetary health, which should be a priority also among health professionals.
  • Giaretta, Paula R.; Suchodolski, Jan S.; Jergens, Albert E.; Steiner, Jorg M.; Lidbury, Jonathan A.; Cook, Audrey K.; Hanifeh, Mohsen; Spillmann, Thomas; Kilpinen, Susanne; Syrja, Pernilla; Rech, Raquel R. (2020)
    The intestinal microbiota is believed to play a role in the pathogenesis of inflammatory bowel disease in humans and chronic inflammatory enteropathy (CIE) in dogs. While most previous studies have described the gut microbiota using sequencing methods, it is fundamental to assess the spatial distribution of the bacteria for a better understanding of their relationship with the host. The microbiota in the colonic mucosa of 22 dogs with CIE and 11 control dogs was investigated using fluorescence in situ hybridization (FISH) with a universal eubacterial probe (EUB338) and specific probes for select bacterial groups. The number of total bacteria labeled with EUB338 probe was lower within the colonic crypts of dogs with CIE compared to controls. Helicobacter spp. and Akkermansia spp. were decreased on the colonic surface and in the crypts of dogs with CIE. Dogs with CIE had increased number of Escherichia coli/Shigella spp. on the colonic surface and within the crypts compared to control dogs. In conclusion, the bacterial microbiota in the colonic mucosa differed between dogs with and without CIE, with depletion of the crypt bacteria in dogs with CIE. The crypt bacterial species that was intimately associated with the host mucosa in control dogs was composed mainly of Helicobacter spp.
  • Aivelo, Tuomas; Tschirren, Barbara (2020)
    Experimental field studies have demonstrated negative fitness consequences of Hen Flea Ceratophyllus gallinae infestations for bird hosts, yet it is currently unclear whether these negative effects are a direct consequence of flea-induced blood loss or a result of flea-borne pathogen transmission. Here we used a 16S rRNA gene sequencing approach to characterize the bacterial microbiota community of Hen Fleas collected from Great Tit Parus major nests and found that Brevibacterium (Actinobacteria), Staphylococcus (Firmicutes), Stenotrophomonas (Proteobacteria), Massilia (Proteobacteria), as well as the arthropod endosymbionts 'Candidatus Lariskella' and 'Candidatus Midichloria' were most abundant. We found evidence for the occurrence of Staphylococcus spp. in Hen Fleas, which may cause opportunistic infections in bird hosts, but not of other known pathogens commonly transmitted by other flea species, such as Bartonella spp. or Rickettsia spp. However, Hen Fleas might transmit other pathogens (e.g. viruses or bacteria that are not currently recognized as bird pathogens), which may contribute to the negative fitness consequences of Hen Flea infestations in addition to direct blood loss or secondary infections of wounds caused by biting fleas.
  • Davis-Richardson, Austin G.; Ardissone, Alexandria N.; Dias, Raquel; Simell, Ville; Leonard, Michael T.; Kemppainen, Kaisa M.; Drew, Jennifer C.; Schatz, Desmond; Atkinson, Mark A.; Kolaczkowski, Bryan; Ilonen, Jorma; Knip, Mikael; Toppari, Jorma; Nurminen, Noora; Hyoty, Heikki; Veijola, Riitta; Simell, Tuula; Mykkanen, Juha; Simell, Olli; Triplett, Eric W. (2014)
  • Pekkala, Satu; Keskitalo, Anniina; Kettunen, Emilia; Lensu, Sanna; Nykänen, Noora; Kuopio, Teijo; Ritvos, Olli; Hentilä, Jaakko; Nissinen, Tuuli A.; Hulmi, Juha J. (2019)
    Colorectal cancer (CRC) and cachexia are associated with the gut microbiota and microbial surface molecules. We characterized the CRC-associated microbiota and investigated whether cachexia affects the microbiota composition. Further, we examined the possible relationship between the microbial surface molecule flagellin and CRC. CRC cells (C26) were inoculated into mice. Activin receptor (ACVR) ligands were blocked, either before tumor formation or before and after, to increase muscle mass and prevent muscle loss. The effects of flagellin on C26-cells were studied in vitro. The occurrence of similar phenomena were studied in murine and human tumors. Cancer modulated the gut microbiota without consistent effects of blocking the ACVR ligands. However, continued treatment for muscle loss modified the association between microbiota and weight loss. Several abundant microbial taxa in cancer were flagellated. Exposure of C26-cells to flagellin increased IL6 and CCL2/MCP-1 mRNA and IL6 excretion. Murine C26 tumors expressed more IL6 and CCL2/MCP-1 mRNA than C26-cells, and human CRC tumors expressed more CCL2/MCP-1 than healthy colon sites. Additionally, flagellin decreased caspase-1 activity and the production of reactive oxygen species, and increased cytotoxicity in C26-cells. Conditioned media from flagellin-treated C26-cells deteriorated C2C12-myotubes and decreased their number. In conclusion, cancer increased flagellated microbes that may promote CRC survival and cachexia by inducing inflammatory proteins such as MCP-1. Cancer-associated gut microbiota could not be rescued by blocking ACVR ligands.
  • Ligthart, Kate; Belzer, Clara; de Vos, Willem M.; Tytgat, Hanne L.P. (2020)
    Cell-surface-located proteinaceous appendages, such as flagella and fimbriae or pili, are ubiquitous in bacterial communities. Here, we focus on conserved type IV pili (T4P) produced by bacteria in the intestinal tract, one of the most densely populated human ecosystems. Computational analysis revealed that approximately 30% of known intestinal bacteria are predicted to produce T4P. To rationalize how T4P allow intestinal bacteria to interact with their environment, other microbiota members, and host cells, we review their established role in gut commensals and pathogens with respect to adherence, motility, and biofilm formation, as well as protein secretion and DNA uptake. This work indicates that T4P are widely spread among the known members of the intestinal microbiota and that their contribution to human health might be underestimated.
  • Ouabbou, Sophie (Helsingin yliopisto, 2019)
    Tiivistelmä – Referat – Abstract Mental disorders are among the leading causes of global disease burden and years lived with disability. Their pathogenesis is poorly understood and there are enormous challenges in the development of biomarkers to aid in diagnosis and more effective therapeutic options. It has been documented that the microbiota-gut-brain axis shows alterations in mental disorders such as anxiety, depression, autism spectrum disorders, bipolar disorder and schizophrenia. Here we study the gut microbiota of individuals with axis I mental disorders and their unaffected siblings by 16S RNA gene amplicon sequencing. In the Central Valley of Costa Rica, a total of 37 participants were recruited and diagnosed using a Best Estimate Diagnosis protocol. For each of the individuals diagnosed with a mental disorder a healthy sibling was selected after matching by age and gender. A total of 13 pairs of 26 siblings, affected and unaffected, was used for the analysis. In a subsequent analysis, individuals were also divided into the three categories of “unaffected” (UA), “affected without psychosis” (AA) and “affected with psychosis” (AP). They underwent clinical assessments about their habits and diet and about resilience (Connor-Davidson Resilience Scale), current status (SADS-C) and disability (WHODAS 2.0). Their fecal samples were collected freshly and stored at -80°C. DNA was extracted, libraries constructed by PCR and subjected for Illumina MiSeq 300 paired-end 16S RNA amplicon sequencing for analysis of the gut microbiota. The sequencing data were analyzed using the R packages mare and vegan for gut microbiota composition, diversity and richness, taking into account the identified confounders. All participants were of Hispanic ethnicity, residents of the San José Greater Metropolitan Area, adults and 69% of them were women. Affected individuals had major depression, bipolar affective disorder, psychosis non-otherwise specified or schizoaffective disorder. Based on beta-diversity analysis as a measure of the community-level microbiota variation, it was found that the use of levothyroxine (R2=0.08, p=0.005) and of irbesartan (R2=0.068 ,p=0.001) had a significant impact on the microbiota composition and hence the use of these drugs was included as confounder in further analyses. Several statistically significant differences in the relative abundance of intestinal bacteria were identified: Differences were found in the relative abundance of bacterial families Peptostreptococcaceae, Ruminococcaceae, Porphyromonadaceae, and in bacterial genera Pseudomonas, Barnesiella, Odoribacter, Paludibacter, Lactococcus, Clostridium, Acidaminococcus and Haemophilus. Our results indicate that affected individuals have more pro-inflammatory Proteobacteria (Pseudomonas) and less bacteria associated to healthy phenotype, such as Barnesiella and Ruminococcaceae, the former being dose-dependently depleted in AP and AA compared to UA. Furthermore, we documented decreased bacterial richness among affected participants while no significant differences were detected in alpha diversity. Our study identified significant differences in the microbiota of individuals affected by mental illness when comparing to their healthy siblings. The results may have important implications for the holistic understanding of mental health and its diagnosis and therapeutics. Larger studies to confirm these findings would be justified.
  • Hemida, Manal; Vuori, Kristiina A.; Moore, Robin; Anturaniemi, Johanna; Hielm-Björkman, Anna (2021)
    Background: Inflammatory bowel disease (IBD) is an idiopathic multifactorial disease in humans and dogs, usually assigned to the interactions between genes, gut microbiota, diet, environment, and the immune system. We aimed to investigate the modifiable early life exposures associated with IBD in dogs. Materials and Methods: The study data was extracted from the validated owner-reported DogRisk food frequency questionnaire. This was a cross-sectional questionnaire-based study that tested 21 different early life dietary and environmental, demographic and genetic variables for their association with IBD or not, in adult dogs. A total of 7,015 dogs participated in this study. The study covered early life periods; prenatal, neonatal, early, and late postnatal periods. Two feeding patterns, a non-processed meat-based diet (NPMD) and an ultra-processed carbohydrate-based diet (UPCD) were studied. Data was analyzed using logistic regression analysis with a backward stepwise deletion. Results: From the final models we found that the NPMD during early and late postnatal periods were significantly associated with lower IBD risk later in life. The UPCD during the same periods was associated with a higher risk of IBD incidence. Also, the maternal diet during the neonatal period showed a non-significant trend of lower IBD risk in the offspring with the NPMD and a higher IBD risk with the UPCD. Additionally, the normal body weight of puppies during the first 6 months of age was associated with a lower risk of IBD in adulthood while, slim puppies associated significantly with IBD in adulthood. From the non-modifiable background variables, we identified the maternal history of IBD as the strongest risk factor for later incidence of IBD. Furthermore, male dogs were twice as likely to develop IBD as female dogs were. Conclusions: It is reassuring for owners to know that they themselves can have an impact on their dog's health. A high-fat, low-carbohydrate NPMD exposure during early life, and a normal body condition in puppyhood were significantly associated with less IBD in adult dogs. The opposite was true for UPCD exposure and abnormal body condition score in 6 month old puppies.
  • Prescott, Susan L.; Hancock, Trevor; Bland, Jeffrey; van den Bosch, Matilda; Jansson, Janet K.; Johnson, Christine C.; Kondo, Michelle; Katz, David; Kort, Remco; Kozyrskyj, Anita; Logan, Alan C.; Lowry, Christopher A.; Nanan, Ralph; Poland, Blake; Robinson, Jake; Schroeck, Nicholas; Sinkkonen, Aki; Springmann, Marco; Wright, Robert O.; Wegienka, Ganesa (2019)
    inVIVO Planetary Health (inVIVO) is a progressive scientific movement providing evidence, advocacy, and inspiration to align the interests and vitality of people, place, and planet. Our goal is to transform personal and planetary health through awareness, attitudes, and actions, and a deeper understanding of how all systems are interconnected and interdependent. Here, we present the abstracts and proceedings of our 8th annual conference, held in Detroit, Michigan in May 2019, themed "From Challenges, to Opportunities". Our far-ranging discussions addressed the complex interdependent ecological challenges of advancing global urbanization, including the biopsychosocial interactions in our living environment on physical, mental, and spiritual wellbeing, together with the wider community and societal factors that govern these. We had a strong solutions focus, with diverse strategies spanning from urban-greening and renewal, nature-relatedness, nutritional ecology, planetary diets, and microbiome rewilding, through to initiatives for promoting resilience, positive emotional assets, traditional cultural narratives, creativity, art projects for personal and community health, and exploring ways of positively shifting mindsets and value systems. Our cross-sectoral agenda underscored the importance and global impact of local initiatives everywhere by contributing to new normative values as part of a global interconnected grass-roots movement for planetary health.
  • Terhonen, Eeva; Blumenstein, Kathrin; Kovalchuk, Andriy; Asiegbu, Fred O. (2019)
    Terrestrial plants including forest trees are generally known to live in close association with microbial organisms. The inherent features of this close association can be commensalism, parasitism or mutualism. The term microbiota has been used to describe this ecological community of plant-associated pathogenic, mutualistic, endophytic and commensal microorganisms. Many of these microbiota inhabiting forest trees could have a potential impact on the health of, and disease progression in, forest biomes. Comparatively, studies on forest tree microbiomes and their roles in mutualism and disease lag far behind parallel work on crop and human microbiome projects. Very recently, our understanding of plant and tree microbiomes has been enriched due to novel technological advances using metabarcoding, metagenomics, metatranscriptomics and metaproteomics approaches. In addition, the availability of massive DNA databases (e.g., NCBI (USA), EMBL (Europe), DDBJ (Japan), UNITE (Estonia)) as well as powerful computational and bioinformatics tools has helped to facilitate data mining by researchers across diverse disciplines. Available data demonstrate that plant phyllosphere bacterial communities are dominated by members of only a few phyla (Proteobacteria, Actinobacteria, Bacteroidetes). In bulk forest soil, the dominant fungal group is Basidiomycota, whereas Ascomycota is the most prevalent group within plant tissues. The current challenge, however, is how to harness and link the acquired knowledge on microbiomes for translational forest management. Among tree-associated microorganisms, endophytic fungal biota are attracting a lot of attention for their beneficial health- and growth-promoting effects, and were preferentially discussed in this review.
  • Haahtela, Tari; Alenius, Harri; Lehtimäki, Jenni; Sinkkonen, Aki; Fyhrquist, Nanna; Hyöty, Heikki; Ruokolainen, Lasse; Mäkelä, Mika J. (European Academy of Allergy and Clinical Immunology & John Wiley & Sons Ltd., 2021)
    Increase of allergic conditions has occurred at the same pace with the Great Acceleration, which stands for the rapid growth rate of human activities upon earth from 1950s. Changes of environment and lifestyle along with escalating urbanization are acknowledged as the main underlying causes. Secondary (tertiary) prevention for better disease control has advanced considerably with innovations for oral immunotherapy and effective treatment of inflammation with corticosteroids, calcineurin inhibitors, and biological medications. Patients are less disabled than before. However, primary prevention has remained a dilemma. Factors predicting allergy and asthma risk have proven complex: Risk factors increase the risk, while protective factors counteract them. Interaction of human body with environmental biodiversity with micro-organisms and biogenic compounds as well as the central role of epigenetic adaptation in immune homeostasis have given new insight. Allergic diseases are good indicators of the twisted relation to environment. In various non-communicable diseases, the protective mode of the immune system indicates low-grade inflammation without apparent cause. Giving microbes, pro- and prebiotics, has shown some promise in prevention and treatment. The real-world public health programme in Finland (2008–2018) emphasized nature relatedness and protective factors for immunological resilience, instead of avoidance. The nationwide action mitigated the allergy burden, but in the lack of controls, primary preventive effect remains to be proven. The first results of controlled biodiversity interventions are promising. In the fast urbanizing world, new approaches are called for allergy prevention, which also has a major cost saving potential.
  • Lassila, Joose (Helsingin yliopisto, 2020)
    The aim of this study was to examine the leaf endophytic bacteria in Plantago lanceolata. The first aim was to get a comprehensive picture of the bacterial diversity, by screening for the different bacterial genera inside the leaves. Furthermore, I aimed to examine the effect of soil and maternal genotype on the endophytic community within P. lanceolata leaves and search for clues of vertical inheritance of endophytes from parent to offspring via seeds. I studied the endophytic bacteria by extracting DNA from the plant leaves and by trying to amplify any bacterial DNA present to get a view of the bacterial diversity in the leaves. My aim was to compare the bacterial community of the mother plants to that of their offspring and also to compare the bacterial communities of plants grown in different soil conditions. Furthermore, I tried to study how the soil conditions affect the growth of P. lanceolata seedlings. I collected seeds and leaf samples of P. lanceolata from Åland, Southwestern Finland, from a population that is part of the ongoing long-term metapopulation research started in Åland in the early 90’s. I marked 21 plant individuals (hereafter referred to as the “mother plants”) in the field in June, when collecting the first leaf samples. In August I collected all seeds from the same plant individuals and a second set of leaf samples. I also collected soil samples from the same location. With the seeds collected from the wild population I executed a growth experiment in Viikki, Helsinki. I grew one set of seeds in twice autoclaved sand (hereafter referred to as the “sterile soil”) and another set in twice autoclaved sand mixed with soil collected from the Åland population (hereafter referred to as the “environmental soil”). I surface sterilized all seeds and then sowed each in their own growth pot and placed them in a growth chamber. During the experiment I took measurements of the leaves. At end of the growth experiment, I took samples of the leaves and surface sterilized them to exclude any epiphytic microorganisms from the analysis. I also surface sterilized the leaf samples taken from the mother plants. I then extracted DNA from the leaf samples and run PCR to amplify certain regions of the bacterial 16S rDNA gene, that is widely used in bacterial taxonomy. The obtained DNA reads where then clustered into Operational Taxonomic Units (OTUs) and assigned taxonomy using SILVA reference database. Mitochondria and chloroplasts of eukaryotic organisms also harbour 16S rDNA regions, so the challenge of studies looking at endophytic bacteria is to exclude the 16S regions of mitochondria and chloroplasts. This proved to be a problem in my study also. More than 86% of all DNA reads obtained turned out to be from P. lanceolata mitochondria and more than 12% from P. lanceolata chloroplasts. Only a bit more than 1% of the reads were eubacterial. This effectively hindered reliable analysis of the endophyte community. I nevertheless analysed the observed eubacterial diversity although the results must be taken as only preliminary and with utmost caution. The eubacterial reads clustered into 218 OTUs, representing 71 different bacterial genera. Six most common genera constituted over 83% of eubacterial reads. Most of these bacteria, most notably Shewanella, Ralstonia and Halomonas, could be identified as being clearly contaminants and not real endophytes. For the 65 less common bacterial genera I performed community analysis using Bray-Curtis Dissimilarity index and Analysis of Similarities (ANOSIM). The results showed that there was a significant difference between the different soil treatments (P = 0.014, R = 0.3787) and also between the two growth chambers (P = 0.011, R = 0.5493). I found no effect of maternal genotype on the bacterial community. Therefore, I observed no sign of vertical inheritance of endophytes. The growth experiment results showed that germination percentage was significantly lower in the environmental soil than in the sterile soil for all genotypes (F = 10.78, P = 0.0012). However, seedling in the environmental soil grew bigger than the seedlings in the sterile soil (F = 10.91, P < 0.0001). For future studies on similar topics, validating molecular methods before large scale sequencing could yield more reliable results. Size fractionating the DNA products of the first PCR round could exclude most mitochondrial sequences and hence allow better analysis of endophytes. This would enable studying interesting questions on coevolution and ecology of host-endophyte interactions. Although I did find some differences in the bacterial communities of different treatments, these results must be considered with caution and as only preliminary.
  • Lundgren, Sara N.; Madan, Juliette C.; Karagas, Margaret R.; Morrison, Hilary G.; Hoen, Anne G.; Christensen, Brock C. (2019)
    The process of breastfeeding exposes infants to bioactive substances including a diversity of bacteria from breast milk as well as maternal skin. Knowledge of the character of and variation in these microbial communities, as well as the factors that influence them, is limited. We aimed to identify profiles of breastfeeding-associated microbial communities and their association with maternal and infant factors. Bilateral milk samples were collected from women in the New Hampshire Birth Cohort Study at approximately 6 weeks postpartum without sterilization of the skin in order to capture the infant-relevant exposure. We sequenced the V4-V5 hypervariable region of the bacterial 16S rRNA gene in 155 human milk samples. We used unsupervised clustering (partitioning around medoids) to identify microbial profiles in milk samples, and multinomial logistic regression to test their relation with maternal and infant variables. Associations between alpha diversity and maternal and infant factors were tested with linear models. Four breastfeeding microbiome types (BMTs) were identified, which differed in alpha diversity and in Streptococcus, Staphylococcus, Acinetobacter, and Pseudomonas abundances. Higher maternal pre-pregnancy BMI was associated with increased odds of belonging to BMT1 [OR (95% CI) = 1.13 (1.02, 1.24)] or BMT3 [OR (95% CI) = 1.12 (1.01, 1.25)] compared to BMT2. Independently, increased gestational weight gain was related to reduced odds of membership in BMT1 [OR (95% CI) = 0.66 (0.44, 1.00) per 10 pounds]. Alpha diversity was positively associated with gestational weight gain and negatively associated with postpartum sample collection week. There were no statistically significant associations of breastfeeding microbiota with delivery mode. Our results indicate that the breastfeeding microbiome partitions into four profiles and that its composition and diversity is associated with measures of maternal weight.
  • Freitag, Tobias L.; Hartikainen, Anna; Jouhten, Hanne; Sahl, Cecilia; Meri, Seppo; Anttila, Veli-Jukka; Mattila, Eero; Arkkila, Perttu; Jalanka, Jonna; Satokari, Reetta (2019)
    Fecal microbiota transplantation (FMT) is an effective therapy for recurrent Clostridioides difficile infection (rCDI) and is also considered a potential treatment for a wide range of intestinal and systemic diseases. FMT corrects the microbial dysbiosis associated with rCDI, and the engraftment of donor microbiota is likely to play a key role in treatment efficacy. For disease indications other than rCDI, FMT treatment efficacy has been moderate. This may be partly due to stronger resilience of resident host microbiota in patients who do not suffer from rCDI. In rCDI, patients typically have undergone several antibiotic treatments prior to FMT, depleting the microbiota. In this study, we addressed the effect of broad-spectrum antibiotics (Ab) as a pre-treatment to FMT on the engraftment of donor microbiota in recipients. We conducted a pre-clinical study of FMT between two healthy mouse strains, Balb/c as donors and C57BL/6 as recipients, to perform FMT within the same species and to mimic interindividual FMT between human donors and patients. Microbiota composition was assessed with high-throughput 16S rDNA amplicon sequencing. The microbiota of Balb/c and C57BL/6 mice differed significantly, which allowed for the assessment of microbiota transplantation from the donor strain to the recipient. Our results showed that Ab-treatment depleted microbiota in C57BL/6 recipient mice prior to FMT. The diversity of microbiota did not recover spontaneously to baseline levels during 8 weeks after Ab-treatment, but was restored already at 2 weeks in mice receiving FMT. Interestingly, pre-treatment with antibiotics prior to FMT did not increase the overall similarity of the recipient's microbiota to that of the donor's, as compared with mice receiving FMT without Ab-treatment. Pre-treatment with Ab improved the establishment of only a few donor-derived taxa, such as Bifidobacterium, in the recipients, thus having a minor effect on the engraftment of donor microbiota in FMT. In conclusion, pre-treatment with broad-spectrum antibiotics did not improve the overall engraftment of donor microbiota, but did improve the engraftment of specific taxa. These results may inform future therapeutic studies of FMT.
  • Pirttiniemi, Juho (Helsingin yliopisto, 2020)
    The objective was to evaluate how different silage additives can manipulate the ensiling process and the profile of bacterial communities of grass silages under varying management conditions. Silages were made from mixed timothy (Phleum pratense) and meadow fescue (Festuca pratensis) grass to laboratory scale silos using two compaction levels. The tightly compacted grass was also contaminated with soil and dairy cow faeces. Four additive treatments were used including control without additive (CONT), formic acid based additive (FA), homofermentative strains of lactic acid bacteria (LAB) and salt based additive (SALT). Tight compaction resulted on average in lower pH and ethanol concentration in silages than loose compaction mostly caused by changes in CONT silages. Soil contamination clearly affected CONT and SALT silages by stimulating extensive fermentation and thus decreasing pH and amount of residual water-soluble carbohydrates (WSC) compared to non-contaminated silages. In all conditions, FA restricted fermentation resulting in silages with high WSC and reduced total fermentation products concentration. Soil contamination improved aerobic stability of silages compared to non-contaminated ones because of higher acetic acid concentration in contaminated silages. Abundance of selected 16 bacteria in raw material was low, with Sphingomonas and Stenotrophomonas genera being the most abundant. After fermentation both Lactobacillaceae family and as part of it Lactobacillus genus were dominant with Sphingomonas genus in most of the silages. FA decreased the abundance of Lactobacillaceae family whereas LAB increased it. Soil contamination reduced the amount of other Lactobacillaceae family but boosted the growth of Lactobacillus genus. Lactobacillus presented negative correlations with Mycoplana, Devosia and Sphingomonas. Five bacteria were connected to desirable fermentation pattern and they all were part of same phylum Firmicute. All other selected bacteria had negative correlation with low pH and amount of lactic and total fermentation acids in silage. Use of additives improved fermentation quality of silages ensiled under different management conditions. Different types of additives resulted in varied bacterial profiles. Results confirmed the importance of tight compaction and good hygiene for stable fermentation. Strong correlations between bacterial communities and fermentation quality parameters provided clear insight of the role of the most abundant populations on the fermentation process of grass silage.
  • Santos-Cortez, R.L.P.; Bhutta, M.F.; Earl, J.P.; Hafrén, Lena; Jennings, M.; Mell, J.C.; Pichichero, M.E.; Ryan, A.F.; Tateossian, Hilda; Ehrlich, G.D. (2020)
    Objective: To review the most recent advances in human and bacterial genomics as applied to pathogenesis and clinical management of otitis media. Data sources: PubMed articles published since the last meeting in June 2015 up to June 2019. Review methods: A panel of experts in human and bacterial genomics of otitis media was formed. Each panel member reviewed the literature in their respective fields and wrote draft reviews. The reviews were shared with all panel members, and a merged draft was created. The panel met at the 20th International Symposium on Recent Advances in Otitis Media in June 2019, discussed the review and refined the content. A final draft was made, circulated, and approved by the panel members. Conclusion: Trans-disciplinary approaches applying pan-omic technologies to identify human susceptibility to otitis media and to understand microbial population dynamics, patho-adaptation and virulence mechanisms are crucial to the development of novel, personalized therapeutics and prevention strategies for otitis media. Implications for practice: In the future otitis media prevention strategies may be augmented by mucosal immunization, combination vaccines targeting multiple pathogens, and modulation of the middle ear microbiome. Both treatment and vaccination may be tailored to an individual's otitis media phenotype as defined by molecular profiles obtained by using rapidly developing techniques in microbial and host genomics. © 2020 Elsevier B.V.
  • Dhandapani, Praveen K.; Lyyski, Annina M.; Paulin, Lars; Khan, Nahid A.; Suomalainen, Anu; Auvinen, Petri; Dufour, Eric; Szibor, Marten; Jacobs, Howard T. (2019)
    The alternative oxidase (AOX) from Ciona intestinalis was previously shown to be expressible in mice and to cause no physiological disturbance under unstressed conditions. Because AOX is known to become activated under some metabolic stress conditions, resulting in altered energy balance, we studied its effects in mice subjected to dietary stress. Wild-type mice (Mus musculus, strain C57BL/6JOlaHsd) fed a high-fat or ketogenic (high-fat, low-carbohydrate) diet show weight gain with increased fat mass, as well as loss of performance, compared with chow-fed animals. Unexpectedly, AOX-expressing mice fed on these metabolically stressful, fat-rich diets showed almost indistinguishable patterns of weight gain and altered body composition as control animals. Cardiac performance was impaired to a similar extent by ketogenic diet in AOX mice as in nontransgenic littermates. AOX and control animals fed on ketogenic diet both showed wide variance in weight gain. Analysis of the gut microbiome in stool revealed a strong correlation with diet, rather than with genotype. The microbiome of the most and least obese outliers reared on the ketogenic diet showed no consistent trends compared with animals of normal body weight. We conclude that AOX expression in mice does not modify physiological responses to extreme diets.
  • Shetty, Sudarshan A.; Zuffa, Simone; Bui, Thi Phuong Nam; Aalvink, Steven; Smidt, Hauke; De Vos, Willem M. (2018)
    A bacterial strain designated L2-7(T), phylogenetically related to Eubacterium hallii DSM 3353(T), was previously isolated from infant faeces. The complete genome of strain L2-7(T) contains eight copies of the 16S rRNA gene with only 98.098.5 % similarity to the 16S rRNA gene of the previously described type strain E. hallii. The next closest validly described species is Anaerostipes hadrus DSM 3319(T) (90.7 % 16S rRNA gene similarity). A polyphasic taxonomic approach showed strain L2-7(T) to be a novel species, related to type strain E. hallii DSM 3353(T). The experimentally observed DNA-DNA hybridization value between strain L2-7(T) and E. hallii DSM 3353(T) was 26.25 %, close to that calculated from the genomes (34.3 %). The G+C content of the chromosomal DNA of strain L2-7(T) was 38.6 mol%. The major fatty acids were C-16(:0), C-16(:1) cis9 and a component with summed feature 10 (C-10(:1) c11/t9/t6c). Strain L2-7(T) had higher amounts of C-16:0 (30.6 %) compared to E. hallii DSM 3353(T) (19.5 %) and its membrane contained phosphatidylglycerol and phosphatidylethanolamine, which were not detected in E. hallii DSM 3353(T). Furthermore, 16S rRNA gene phylogenetic analysis advocates that E. hallii DSM 3353(T) is misclassified, and its reclassification as a member of the family Lachnospiraceae is necessary. Using a polyphasic approach, we propose that E. hallii (=DSM 3353(T)=ATCC 27751(T)) be reclassified as the type strain of a novel genus Anaerobutyricum sp. nov., comb. nov. and we propose that strain L2-7(T) should be classified as a novel species, Anaerobutyricum soehngenii sp. nov. The type strain is L2-7(T) (=DSM 17630(T) =KCIC 15707(T)).