Browsing by Subject "mitophagy"

Sort by: Order: Results:

Now showing items 1-4 of 4
  • McWilliams, Thomas G.; Prescott, Alan R.; Villarejo-Zori, Beatriz; Ball, Graeme; Boya, Patricia; Ganleya, Ian G. (2019)
    Photoreception is pivotal to our experience and perception of the natural world; hence the eye is of prime importance for most vertebrate animals to sense light. Central to visual health is mitochondrial homeostasis, and the selective autophagic turnover of mitochondria (mitophagy) is predicted to play a key role here. Despite studies that link aberrant mitophagy to ocular dysfunction, little is known about the prevalence of basal mitophagy, or its relationship to general autophagy, in the visual system. In this study, we utilize the mito-QC mouse and a closely related general macroautophagy reporter model to profile basal mitophagy and macroautophagy in the adult and developing eye. We report that ocular macroautophagy is widespread, but surprisingly mitophagy does not always follow the same pattern of occurrence. We observe low levels of mitophagy in the lens and ciliary body, in stark contrast to the high levels of general MAP1LC3-dependent macroautophagy in these regions. We uncover a striking reversal of this process in the adult retina, where mitophagy accounts for a larger degree of the macroautophagy taking place, specifically in the photoreceptor neurons of the outer nuclear layer. We also show the developmental regulation of autophagy in a variety of ocular tissues. In particular, mitophagy in the adult mouse retina is reversed in localization during the latter stages of development. Our work thus defines the landscape of mitochondrial homeostasis in the mammalian eye, and in doing so highlights the selective nature of autophagy in vivo and the specificity of the reporters used.
  • Butkovic, Rebeka (Helsingin yliopisto, 2020)
    Autophagy is a cellular recycling and quality control process that eliminates cellular material in a non-selective or selective fashion. Macroautophagy is non-selective, and degrades macromolecules or damaged organelles to sustain cellular homeostasis. The selective autophagy of dysfunctional or excess mitochondria is known as mitophagy. The clinical importance of functional degradation is exemplified by the lysosomal storage disorders (LSDs), where lysosomal hydrolytic enzymes are absent or dysfunctional. Previous investigations of a rare infantile LSD indicated a change in autophagy and decreased mitochondrial content. The aim of this MSc thesis was to quantitatively compare macroautophagy and mitophagy in a cellular model of this rare LSD, by generating fluorescent macroautophagy and mitophagy reporter-expressing cell lines from patient material. Fibroblasts derived from patients diagnosed with a rare infantile LSD were transduced with lentiviruses carrying either mCherry-GFP-LC3 or mito-QC reporters, for the microscopic analysis of autophagy and mitophagy, respectively. I also monitored autophagic flux by traditional biochemistry in untreated and starved cells, in the presence or absence of lysosomal inhibitors (bafilomycin A1). Basal and iron-depletion induced mitophagy was profiled using confocal microscopy, quantitative cell biology and biochemistry. My findings suggest differential autophagic turnover in LSD patient-derived fibroblasts, with a marked accumulation of non-acidified autophagic structures. Basal mitophagy was elevated in two out of three LSD patient cell lines compared to unaffected controls. LSD patient cells exhibited altered mitochondrial content and network architecture compared to controls. These phenotypes were accompanied by distinct changes in the endo-lysosomal system and increased cell size. The patient-derived cells exhibit a profound accumulation of lysosomes and autophagic structures. My findings are in accordance with previous research in the field, suggesting perturbed macroautophagy in this rare LSD. The observations of altered mitochondrial homeostasis in this LSD provide a basis for future investigation. The reporter-expressing cells, generated as part of this MSc thesis project, will enable future studies of mechanisms that underlie phenotypic changes, and will complement essential in vivo work in this area.
  • Fukuoh, Atsushi; Cannino, Giuseppe; Gerards, Mike; Buckley, Suzanne; Kazancioglu, Selena; Scialo, Filippo; Lihavainen, Eero; Ribeiro, Andre; Dufour, Eric; Jacobs, Howard T. (2014)
  • Zachari, Maria; Gudmundsson, Sigurdur R.; Li, Ziyue; Manifava, Maria; Shah, Ronak; Smith, Matthew; Stronge, James; Karanasios, Eleftherios; Piunti, Caterina; Kishi-Itakura, Chieko; Vihinen, Helena; Jokitalo, Eija; Guan, Jun-Lin; Buss, Folma; Smith, Andrew M.; Walker, Simon A.; Eskelinen, Eeva-Liisa; Ktistakis, Nicholas T. (2019)
    The dynamics and co-ordination between autophagy machinery and selective receptors during mitophagy are unknown. Also unknown is whether mitophagy depends on pre-existing membranes, or is triggered on the surface of damaged mitochondria. Using a ubiquitin-dependent mitophagy inducer, the lactone ivermectin, we have combined genetic and imaging experiments to address these questions. Ubiquitination of mitochondrial fragments is required earliest followed by autophosphorylation of TBK1. Next, early essential autophagy proteins FIP200 and ATG13 act at different steps whereas ULK1/2 are dispensable. Receptors act temporally and mechanistically upstream of ATG13 but downstream of FIP200. The VPS34 complex functions at the omegasome step. ATG13 and optineurin target mitochondria in a discontinuous oscillatory way suggesting multiple initiation events. Targeted ubiquitinated mitochondrial are cradled by endoplasmic reticulum strands even without functional autophagy machinery and mitophagy adaptors. We propose that damaged mitochondria are ubiquitinated and dynamically encased in ER strands providing platforms for formation of the mitophagosomes.