Browsing by Subject "moisture"

Sort by: Order: Results:

Now showing items 1-4 of 4
  • Zou, Ling (Helsingfors universitet, 2009)
    Andean lupin (Lupinus mutabilis Sweet) is a potential oilseed crop, with a very high protein content (40–45%) and 15–20% oil content. It is valued as an alternative protein source for both human and animal consumption, and like several other lupin species, has a potential role in phytoremediation. Previous experience in central and southern Europe has shown the crop to have low and unstable yields with high sensitivity to heat and drought during the grain–filling stage. The species may therefore be more suitable for cool–temperate climates, as it comes from similar altitudes and latitudes as potato. Therefore, an experiment was set out to quantify the responses of Andean lupin to heat stress, using both gradually and suddenly rising temperatures during grain filling. In preliminary tests 60 accessions from 4 germplasm banks were screened for time to flowering and daylength sensitivity. For this experiment, 3 accessions were chosen, 478435, 457972, 457977, with vegetative phase durations of 44, 53, 64 days from sowing to first flower, respectively. Forty two plants of each accession were sown and reduced to 30 on the basis of uniformity. Plants were grown in a glasshouse with 22 °C, 18 h days and 18 °C, 6 h nights until about 25 days after flowering. Ten plants of each accession were subjected to one of the following treatments: control (continuing in the same glasshouse conditions), sudden heat stress (transferred to a growth chamber and subjected to 38 °C from 11:00 to 15:00) or gradual heat stress (transferred to a growth chamber and subjected to temperature increases of 4 °C day temperature and 2 °C night temperature, with the final two days at 38 °C from 11:00 to 15:00). The plants were returned to the glasshouse and when mature, the seeds were harvested and pooled into 3 replicates per accession and treatment for quality analysis. Seed protein, oil, soluble sugar, ash and moisture content were determined. Data were calculated on the basis of percentage of overall seed mass and also on a milligrams per seed basis in order to reflect the seed physiology at grain–filling stage. Sudden heat stress had greater effects on seed composition than gradual heat stress. When compared with control, sudden heat stress resulted in more loss of every component than gradual heat stress, on a per–seed basis, in all 3 accessions and the responses of the accessions to the sudden stress were not statistically different. Under sudden heat stress, mean seed weight declined by 70%, protein content by 70%, oil content by 85%, ash content by 50%, and soluble sugar content by 75%. The accessions responded differently, however, to the gradual heat stress. Accession 478435 experienced significantly greater reduction in seed weight, protein and ash content than accessions 457972 and 457977. Oil content per seed and soluble sugar content per seed were also lower in 478435 than in the other two cultivars, but the difference was not significant. On the flour basis, sudden heat stress increased ash content and decreased oil content and soluble sugar content significantly in all accessions. Accession 478435 had highest value in ash content at significant level. Under gradual stress, protein and ash content were increased while oil mass and soluble sugar mass were decreased. 478435 had significantly higher protein mass and ash mass in flour with respectively 57% and 5.1%, 457977 had significantly higher soluble sugar content with 112 mg/g. The results showed that heat stress can have a significant effect on the quantity and quality of seed yield in Andean lupin. While all tested accessions were severely susceptible to sudden heat stress, gradual stress identified differences between accessions, with one being much more susceptible than the other two. The most susceptible accession was the earliest to flower. Gradual heat stress allows better resolution than sudden heat stress when screening germplasm for heat tolerance.
  • Gawriyski, Lisa (Helsingin yliopisto, 2018)
    Life historyresearch seeks to explain how natural selection and ecological challenges shape organisms to optimize their fitness. A strong immune defense is energetically demanding to upkeep and there may be trade-offs among other life history traits. Investing a lot of energy to upkeep a strong immune defense in conditions where there are less pathogens and parasites might have negative fitness effects. Heliconius eratois a neotropical species of butterfly found widely in South America. The immune defense, ecologicalfactors affecting its immune defense, and possible life history trade-offs of the butterfly are currently not well known. Environmental moisture conditions have been shown to affect the diversity, quality and amount of microorganisms and parasites. The aim of this thesis was to use real-time quantitative PCR (RT-qPCR) to quantify immune gene expression of individuals of the butterfly species Heliconius eratocollected from different environmental moisture conditions. Additionally, individual variation in encapsulation rates, a physiological measure of immunity, was compared across the moisture gradient. Results indicate reduced expression of the gene encoding the antimicrobial peptide attacin in dry conditions, but no difference in encapsulation rates across the moisture gradient. Additionally, differential expression of the prophenoloxidase encoding gene was found between male and female butterflies. These results indicate a possibility of differential immune threats in different environmental moisture conditions in H. erato, but requires further study.
  • Huttunen, Kati; Wlodarczyk, Anna J.; Tirkkonen, Jenni; Mikkonen, Santtu; Täubel, Martin; Krop, Esmeralda; Jacobs, Jose; Pekkanen, Juha; Heederik, Dick; Zock, Jan-Paul; Hyvärinen, Anne; Hirvonen, Maija-Riitta; Adams, Rachel; Jones, Tim; Zimmermann, Ralf; BeruBe, Kelly (2019)
    Exposure to moisture-damaged indoor environments is associated with adverse respiratory health effects, but responsible factors remain unidentified. In order to explore possible mechanisms behind these effects, the oxidative capacity and hemolytic activity of settled dust samples (n = 25) collected from moisture-damaged and non-damaged schools in Spain, the Netherlands, and Finland were evaluated and matched against the microbial content of the sample. Oxidative capacity was determined with plasmid scission assay and hemolytic activity by assessing the damage to isolated human red blood cells. The microbial content of the samples was measured with quantitative PCR assays for selected microbial groups and by analyzing the cell wall markers ergosterol, muramic acid, endotoxins, and glucans. The moisture observations in the schools were associated with some of the microbial components in the dust, and microbial determinants grouped together increased the oxidative capacity. Oxidative capacity was also affected by particle concentration and country of origin. Two out of 14 studied dust samples from moisture-damaged schools demonstrated some hemolytic activity. The results indicate that the microbial component connected with moisture damage is associated with increased oxidative stress and that hemolysis should be studied further as one possible mechanism contributing to the adverse health effects of moisture-damaged buildings.
  • Virman, Meri; Bister, Marja; Räisänen, Jouni; Sinclair, Victoria; Järvinen, Heikki (2021)
    After the release of the ERA-Interim reanalysis, many changes have been made to the Integrated Forecasting System model and data-assimilation system, resulting in an improved reanalysis, ERA5. One of the changes in the model allows the model version in ERA5 to represent the moisture sensitivity of deep convection more realistically than the model version in ERA-Interim. A previous modeling study showed that this change alone improved the representation of the tropical atmosphere, e.g. tropical variability and precipitation distribution. Here we compare the vertical structures of average temperature and moisture over tropical oceans in ERA5, ERA-Interim and radiosonde observations to see whether ERA5 is also closer to observations for those regions and variables. Our results reveal that at many levels, temperature and relative humidity in ERA5 and ERA-Interim differ from observations, however ERA-Interim is generally closer to observations than ERA5 in the low-to-midtroposphere. Most notably, in many stations, ERA5 is on average colder than observations at similar to 550-800 hPa. Large vertical gradients occur in the profile of the mean temperature difference between ERA5 and observations at similar to 700-900 hPa, but are absent in ERA-Interim. Relative humidity differences are not as robust as temperature differences, however in many stations ERA5 is on average moister than observations at similar to 650-800 hPa while ERA-Interim is closer to observations there. Below the similar to 950 hPa-level ERA5 and ERA-Interim are generally colder and moister than observations. Our results indicate that ERA5 deviates more than ERA-Interim from tropical radiosonde observations in the low-to-midtroposphere. It seems plausible that this deviation is, at least partly, due to the newer formulation of organised deep entrainment in ERA5 and the associated mechanism for the moisture sensitivity. However, more extensive model evaluation is needed to understand the reasons for the differences between the reanalyses and radiosonde observations.