Browsing by Subject "molekyylimerkki"

Sort by: Order: Results:

Now showing items 1-1 of 1
  • Koskela, Elli (Helsingfors universitet, 2009)
    Strawberry (Fragaria × ananassa) is the most important berry crop cultivated in Finland. Due to the species' economic importance, there is a national breeding programme aimed at extending the cropping season from the current one month to up to three months. This could be achieved by growing cultivars which would initiate flowers throughout the summer months, without the requirement of a period of short days as is the case with currently grown cultivars. The cultivated strawberry is an octoploid and therefore has complex patterns of inheritance. It is desirable to study the genetic mechanisms of flowering in the closely related but diploid species F. vesca (L). In the diploid Fragaria, a mutation in a single locus, namely the SEASONAL FLOWERING LOCUS (Sfl), changes the flowering phenotype from seasonal to perpetual flowering. There is also an array of genetic tools available for F. vesca, which facilitate genetic studies at molecular level. Experiments described here aimed at elucidating the identity of the gene which confers perpetual flowering in F. vesca by exploring the flowering characteristics and genotypes of five F2 populations (crosses between seasonal × perpetual flowering cultivars). The study took advantage of a genetic map for diploid Fragaria, publicly available EST and genomic Fragaria sequences and a recently developed BAC library. Sequence information was used for designing gene–specific primers for a host of flowering–related candidate genes, which were subsequently mapped on the diploid Fragaria genetic map. BAC library was screened with molecular markers supposedly located close to the Sfl, with the aim of positionally cloning the Sfl. Segregation of flowering phenotypes in the five F2 populations showed, that the Sfl indeed controls flowering in all the tested cultivars. A genetic map was constructed of the chromosome with the Sfl, and a positional cloning attempt was initiated with the closest flanking markers. 45 gene–specific primers pairs were designed for 21 flowering–related genes, and eight genes were successfully mapped on the diploid Fragaria map. One of the mapped genes, namely PRR7, located very close to the Sfl, and is a potential candidate for the gene that has evaded identification so far.