Browsing by Subject "monitorointi"

Sort by: Order: Results:

Now showing items 1-15 of 15
  • Kotamäki, Niina; Järvinen, Marko; Kauppila, Pirkko; Korpinen, Samuli; Lensu, Anssi; Malve, Olli; Mitikka, Sari; Silander, Jari; Kettunen, Juhani (Springer, 2019)
    Environmental Monitoring Assessment 191, 318 (2019)
    The representativeness of aquatic ecosystem monitoring and the precision of the assessment results are of high importance when implementing the EU’s Water Framework Directive that aims to secure a good status of waterbodies in Europe. However, adapting monitoring designs to answer the objectives and allocating the sampling resources effectively are seldom practiced. Here, we present a practical solution how the sampling effort could be re-allocated without decreasing the precision and confidence of status class assignment. For demonstrating this, we used a large data set of 272 intensively monitored Finnish lake, coastal, and river waterbodies utilizing an existing framework for quantifying the uncertainties in the status class estimation. We estimated the temporal and spatial variance components, as well as the effect of sampling allocation to the precision and confidence of chlorophyll-a and total phosphorus. Our results suggest that almost 70% of the lake and coastal waterbodies, and 27% of the river waterbodies, were classified without sufficient confidence in these variables. On the other hand, many of the waterbodies produced unnecessary precise metric means. Thus, reallocation of sampling effort is needed. Our results show that, even though the studied variables are among the most monitored status metrics, the unexplained variation is still high. Combining multiple data sets and using fixed covariates would improve the modeling performance. Our study highlights that ongoing monitoring programs should be evaluated more systematically, and the information from the statistical uncertainty analysis should be brought concretely to the decision-making process.
  • Blackman, Rosetta C.; Mächler, Elvira; Altermatt, Florian; Arnold, Amanda; Beja, Pedro; Boets, Pieter; Egeter, Bastian; Elbrecht, Vasco; Filipe, Ana Filipa; Jones, J. Iwan; Macher, Jan; Majaneva, Markus; Martins, Filipa M. S.; Múrria, Cesc; Meissner, Kris (Pensoft, 2019)
    Metabarcoding and Metagenomics 3: e34735
    Over the last decade, steady advancements have been made in the use of DNA-based methods for detection of species in a wide range of ecosystems. This progress has culminated in molecular monitoring methods being employed for the detection of several species for enforceable management purposes of endangered, invasive, and illegally harvested species worldwide. However, the routine application of DNA-based methods to monitor whole communities (typically a metabarcoding approach) in order to assess the status of ecosystems continues to be limited. In aquatic ecosystems, the limited use is particularly true for macroinvertebrate communities. As part of the DNAqua-Net consortium, a structured discussion was initiated with the aim to identify potential molecular methods for freshwater macroinvertebrate community assessment and identify important knowledge gaps for their routine application. We focus on three complementary DNA sources that can be metabarcoded: 1) DNA from homogenised samples (bulk DNA), 2) DNA extracted from sample preservative (fixative DNA), and 3) environmental DNA (eDNA) from water or sediment. We provide a brief overview of metabarcoding macroinvertebrate communities from each DNA source and identify challenges for their application to routine monitoring. To advance the utilisation of DNA-based monitoring for macroinvertebrates, we propose an experimental design template for a series of methodological calibration tests. The template compares sources of DNA with the goal of identifying the effects of molecular processing steps on precision and accuracy. Furthermore, the same samples will be morphologically analysed, which will enable the benchmarking of molecular to traditional processing approaches. In doing so we hope to highlight pathways for the development of DNA-based methods for the monitoring of freshwater macroinvertebrates.
  • Kahiluoto, Joonas; Hirvonen, Jukka; Näykki, Teemu (Springer, 2019)
    Environmental Monitoring and Assessment 191, 259 (2019)
    Continuous sensor measurements are becoming an important tool in environmental monitoring. However, the reliability of field measurements is still too often unknown, evaluated only through comparisons with laboratory methods or based on sometimes unrealistic information from the measuring device manufacturers. A water turbidity measurement system with automatic reference sample measurement and measurement uncertainty estimation was constructed and operated in laboratory conditions to test an approach that utilizes validation and quality control data for automatic measurement uncertainty estimation. Using validation and quality control data for measurement uncertainty estimation is a common practice in laboratories and, if applied to field measurements, could be a way to enhance the usability of field sensor measurements. The measurement system investigated performed replicate measurements of turbidity in river water and measured synthetic turbidity reference solutions at given intervals during the testing period. Measurement uncertainties were calculated for the results using AutoMUkit software and uncertainties were attached to appropriate results. The measurement results correlated well (R2 = 0.99) with laboratory results and the calculated measurement uncertainties were 0.8–2.1 formazin nephelometric units (FNU) (k = 2) for 1.2–5 FNU range and 11–27% (k = 2) for 5–40 FNU range. The measurement uncertainty estimation settings (such as measurement range selected and a number of replicates) provided by the user have a significant effect on the calculated measurement uncertainties. More research is needed especially on finding suitable measurement uncertainty estimation intervals for different field conditions. The approach presented is also applicable for other online measurements besides turbidity within limits set by available measurement devices and stable reference solutions. Potentially interesting areas of application could be the measurement of conductivity, pH, chemical oxygen demand (COD)/total organic carbon (TOC), or metals.
  • Kahlert, Maria; Rühland, Kathleen M.; Lavoie, Isabelle; Keck, François; Saulnier‐Talbot, Emilie; Bogan, Daniel; Brua, Robert B.; Campeau, Stéphane; Christoffersen, Kirsten S.; Culp, Joseph M.; Karjalainen, Satu Maaria; Lento, Jennifer; Schneider, Susanne C.; Shaftel, Rebecca; Smol, John P. (Wiley & Sons, 2020)
    Freshwater Biology
    1. Comprehensive assessments of contemporary diatom distributions across the Arctic remain scarce. Furthermore, studies tracking species compositional differences across space and time, as well as diatom responses to climate warming, are mainly limited to paleolimnological studies due to a lack of routine monitoring in lakes and streams across vast areas of the Arctic. 2. The study aims to provide a spatial assessment of contemporary species distributions across the circum-Arctic, establish contemporary biodiversity patterns of diatom assemblages to use as reference conditions for future biomonitoring assessments, and determine pre-industrial baseline conditions to provide historical context for modern diatom distributions. 3. Diatom assemblages were assessed using information from ongoing regulatory monitoring programmes, individual research projects, and from surface sediment layers obtained from lake cores. Pre-industrial baseline conditions as well as the nature, direction and magnitude of changes in diatom assemblages over the past c.200 years were determined by comparing surface sediment samples (i.e. containing modern assemblages) with a sediment interval deposited prior to the onset of significant anthropogenic activities (i.e. containing pre-1850 assemblages), together with an examination of diatoms preserved in contiguous samples from dated sediment cores. 4. We identified several biotypes with distinct diatom assemblages using contemporary diatom data from both lakes and streams, including a biotype typical for High Arctic regions. Differences in diatom assemblage composition across circum-Arctic regions were gradual rather than abrupt. Species richness was lowest in High Arctic regions compared to Low Arctic and sub-Arctic regions, and higher in lakes than in streams. Dominant diatom taxa were not endemic to the Arctic. Species richness in both lakes and streams reached maximum values between 60°N and 75°N but was highly variable, probably reflecting differences in local and regional environmental factors and possibly sampling effort. 5. We found clear taxon-specific differences between contemporary and pre-industrial samples that were often specific to both ecozone and lake depth. Regional patterns of species turnover (β-diversity) in the past c.200 years revealed that regions of the Canadian High Arctic and the Hudson Bay Lowlands to the south showed most compositional change, whereas the easternmost regions of the Canadian Arctic changed least. As shown in previous Arctic diatom studies, global warming has already affected these remote high latitude ecosystems. 6. Our results provide reference conditions for future environmental monitoring programmes in the Arctic. Furthermore, diatom taxa identification and harmonisation require improvement, starting with circum-Arctic intercalibrations. Despite the challenges posed by the remoteness of the Arctic, our study shows the need for routine monitoring programmes that have a wide geographical coverage for both streams and lakes.
  • Hashemi, Fatemeh; Pohle, Ina; Pullens, Johannes W. M; Tornbjerg, Henrik; Kyllmar, Katarina; Marttila, Hannu; Lepistö, Ahti; Klove, Bjorn; Futter, Martyn; Kronvang, Brian (MDPI, 2020)
    Water 12 6 (2020)
    Optimal nutrient pollution monitoring and management in catchments requires an in-depth understanding of spatial and temporal factors controlling nutrient dynamics. Such an understanding can potentially be obtained by analysing stream concentration–discharge (C-Q) relationships for hysteresis behaviours and export regimes. Here, a classification scheme including nine different C-Q types was applied to a total of 87 Nordic streams draining mini-catchments (0.1–65 km2). The classification applied is based on a combination of stream export behaviour (dilution, constant, enrichment) and hysteresis rotational pattern (clock-wise, no rotation, anti-clockwise). The scheme has been applied to an 8-year data series (2010–2017) from small streams in Denmark, Sweden, and Finland on daily discharge and discrete nutrient concentrations, including nitrate (NO3−), total organic N (TON), dissolved reactive phosphorus (DRP), and particulate phosphorus (PP). The dominant nutrient export regimes were enrichment for NO3− and constant for TON, DRP, and PP. Nutrient hysteresis patterns were primarily clockwise or no hysteresis. Similarities in types of C-Q relationships were investigated using Principal Component Analysis (PCA) considering effects of catchment size, land use, climate, and dominant soil type. The PCA analysis revealed that land use and air temperature were the dominant factors controlling nutrient C-Q types. Therefore, the nutrient export behaviour in streams draining Nordic mini-catchments seems to be dominantly controlled by their land use characteristics and, to a lesser extent, their climate.
  • Hyvärinen, Heini; Skyttä, Annaliina; Jernberg, Susanna; Meissner, Kristian; Kuosa, Harri; Uusitalo, Laura (Springer, 2021)
    Environmental Monitoring and Assessment 193: 400
    Global deterioration of marine ecosystems, together with increasing pressure to use them, has created a demand for new, more efficient and cost-efficient monitoring tools that enable assessing changes in the status of marine ecosystems. However, demonstrating the cost-efficiency of a monitoring method is not straightforward as there are no generally applicable guidelines. Our study provides a systematic literature mapping of methods and criteria that have been proposed or used since the year 2000 to evaluate the cost-efficiency of marine monitoring methods. We aimed to investigate these methods but discovered that examples of actual cost-efficiency assessments in literature were rare, contradicting the prevalent use of the term “cost-efficiency.” We identified five different ways to compare the cost-efficiency of a marine monitoring method: (1) the cost–benefit ratio, (2) comparative studies based on an experiment, (3) comparative studies based on a literature review, (4) comparisons with other methods based on literature, and (5) subjective comparisons with other methods based on experience or intuition. Because of the observed high frequency of insufficient cost–benefit assessments, we strongly advise that more attention is paid to the coverage of both cost and efficiency parameters when evaluating the actual cost-efficiency of novel methods. Our results emphasize the need to improve the reliability and comparability of cost-efficiency assessments. We provide guidelines for future initiatives to develop a cost-efficiency assessment framework and suggestions for more unified cost-efficiency criteria.
  • Waylen, Kerry; Blackstock, Kirsty; van Hulst, Freddy; Damian, Carmen; Horváth, Ferenc; Johnson, Richard; Kanka, Robert; Külvik, Mart; Macleod, Christopher J.A.; Meissner, Kristian; Oprina-Pavelescu, Mihaela M.; Pino, Joan; Primmer, Eeva; Rîșnoveanu, Geta; Šatalová, Barbora; Silander, Jari; Špulerová, Jana; Suškevičs, Monika; van Uytvanck, Jan (Elsevier, 2019)
    Data in Brief 23 (2019), 103785
    The data presented in this DiB article provide an overview of Monitoring and Evaluation (M&E) carried out for 3 European environmental policies (the Water Framework Directive, the Natura 2000 network of protected areas, and Agri-Environment Schemes implemented under the Common Agricultural Policy), as implemented in 9 cases (Catalonia (Spain), Estonia, Finland, Flanders (Belgium), Hungary, Romania, Slovakia, Scotland (UK), Sweden). These data are derived from reports and documents about monitoring programs that were publicly-available online in 2017. The literature on M&E to support adaptive management structured the issues that have been extracted and summarized. The data is related to the research article entitled “Policy-driven monitoring and evaluation: does it support adaptive management of socio-ecological systems?” [Stem et al., 2005]. The information provides a first overview of monitoring and evaluation that has been implemented in response to key European environmental policies. It provides a structured overview that permits a comparison of cases and policies and can assist other scholars and practitioners working on monitoring and evaluation.
  • Pitkänen, Timo P.; Sirro, Laura; Häme, Lauri; Häme, Tuomas; Törmä, Markus; Kangas, Annika (ScienceDirect, 2020)
    International Journal of Applied Earth Observation and Geoinformation 86 (2020)
    The majority of the boreal forests in Finland are regularly thinned or clear-cut, and these actions are regulated by the Forest Act. To generate a near-real time tool for monitoring management actions, an automatic change detection modelling chain was developed using Sentinel-2 satellite images. In this paper, we focus mainly on the error evaluation of this automatized workflow to understand and mitigate incorrect change detections. Validation material related to clear-cut, thinned and unchanged areas was collected by visual evaluation of VHR images, which provided a feasible and relatively accurate way of evaluating forest characteristics without a need for prohibitively expensive fieldwork. This validation data was then compared to model predictions classified in similar change categories. The results indicate that clear-cuts can be distinguished very reliably, but thinned stands exhibit more variation. For thinned stands, coverage of broadleaved trees and detections from certain single dates were found to correlate with the success of the modelling results. In our understanding, this relates mainly to image quality regarding haziness and translucent clouds. However, if the growing season is short and cloudiness frequent, there is a clear trade-off between the availability of good-quality images and their preferred annual span. Gaining optimal results therefore depends both on the targeted change types, and the requirements of the mapping frequency.
  • Olsonen, Riitta (Merentutkimuslaitos, 2007)
    Meri 59
  • Guerra, C. A.; Pendleton, L.; Drakou, E. G.; Proença, V.; Appeltans, W.; Domingos, T.; Geller, G.; Giamberini, M.; Gill, M.; Hummel, H.; Imperio, S.; McGeoch, M.; Provenzale, A.; Serral, I.; Stritih, A.; Turak, E.; Vihervaara, P.; Ziemba, A.; Pereira, H.M. (Elsevier, 2019)
    Global Ecology and Conservation 18 (2019), e00601
    To account for progress towards conservation targets, monitoring systems should capture not only information on biodiversity but also knowledge on the dynamics of ecological processes and the related effects on human well-being. Protected areas represent complex social-ecological systems with strong human-nature interactions. They are able to provide relevant information about how global and local scale drivers (e.g., climate change, land use change) impact biodiversity and ecosystem services. Here we develop a framework that uses an ecosystem-focused approach to support managers in identifying essential variables in an integrated and scalable approach. We advocate that this approach can complement current essential variable developments, by allowing conservation managers to draw on system-level knowledge and theory of biodiversity and ecosystems to identify locally important variables that meet the local or sub-global needs for conservation data. This requires the development of system narratives and causal diagrams that pinpoints the social-ecological variables that represent the state and drivers of the different components, and their relationships. We describe a scalable framework that builds on system based narratives to describe all system components, the models used to represent them and the data needed. Considering the global distribution of protected areas, with an investment in standards, transparency, and on active data mobilisation strategies for essential variables, these have the potential to be the backbone of global biodiversity monitoring, benefiting countries, biodiversity observation networks and the global biodiversity community.
  • Salmi, Pauliina; Eskelinen, Matti A.; Leppänen, Matti T.; Pölönen, Ilkka (MDPI AG, 2021)
    Plants 2021, 10(2), 341
    Spectral cameras are traditionally used in remote sensing of microalgae, but increasingly also in laboratory-scale applications, to study and monitor algae biomass in cultures. Practical and cost-efficient protocols for collecting and analyzing hyperspectral data are currently needed. The purpose of this study was to test a commercial, easy-to-use hyperspectral camera to monitor the growth of different algae strains in liquid samples. Indices calculated from wavebands from transmission imaging were compared against algae abundance and wet biomass obtained from an electronic cell counter, chlorophyll a concentration, and chlorophyll fluorescence. A ratio of selected wavebands containing near-infrared and red turned out to be a powerful index because it was simple to calculate and interpret, yet it yielded strong correlations to abundances strain-specifically (0.85 < r < 0.96, p < 0.001). When all the indices formulated as A/B, A/(A + B) or (A − B)/(A + B), where A and B were wavebands of the spectral camera, were scrutinized, good correlations were found amongst them for biomass of each strain (0.66 < r < 0.98, p < 0.001). Comparison of near-infrared/red index to chlorophyll a concentration demonstrated that small-celled strains had higher chlorophyll absorbance compared to strains with larger cells. The comparison of spectral imaging to chlorophyll fluorescence was done for one strain of green algae and yielded strong correlations (near-infrared/red, r = 0.97, p < 0.001). Consequently, we described a simple imaging setup and information extraction based on vegetation indices that could be used to monitor algae cultures.
  • Ullvén, Johanna (University of Helsinki, 1992)
  • Koski, Vilja; Kotamäki, Niina; Hämäläinen, Heikki; Meissner, Kristian; Karvanen, Juha; Kärkkäinen, Salme (Elsevier, 2020)
    Science of the Total Environment 726 (2020), 138396
    Uncertainty in the information obtained through monitoring complicates decision making about aquatic ecosystems management actions. We suggest the value of information (VOI) to assess the profitability of paying for additional monitoring information, when taking into account the costs and benefits of monitoring and management actions, as well as associated uncertainty. Estimating the monetary value of the ecosystem needed for deriving VOI is challenging. Therefore, instead of considering a single value, we evaluate the sensitivity of VOI to varying monetary value. We also extend the VOI analysis to the more realistic context where additional information does not result in perfect, but rather in imperfect information on the true state of the environment. Therefore, we analytically derive the value of perfect information in the case of two alternative decisions and two states of uncertainty. Second, we describe a Monte Carlo type of approach to evaluate the value of imperfect information about a continuous classification variable. Third, we determine confidence intervals for the VOI with a percentile bootstrap method. Results for our case study on 144 Finnish lakes suggest that generally, the value of monitoring exceeds the cost. It is particularly profitable to monitor lakes that meet the quality standards a priori, to ascertain that expensive and unnecessary management can be avoided. The VOI analysis provides a novel tool for lake and other environmental managers to estimate the value of additional monitoring data for a particular, single case, e.g. a lake, when an additional benefit is attainable through remedial management actions.
  • Koskinen, Päivi; Saarto, Annika (Turun yliopisto, 2018)
  • Uurasjärvi, Emilia; Sainio, Erika; Setälä, Outi; Lehtiniemi, Maiju; Koistinen, Arto (Elsevier, 2021)
    Environmental Pollution 288 (2021), 117780
    Despite the ubiquitousness of microplastics, knowledge on the exposure of freshwater fish to microplastics is still limited. Moreover, no standard methods are available for analyzing microplastics, and the quality of methods used for the quantification of ingested microplastics in fish should be improved. In this study, we studied microplastic ingestion of common wild freshwater fish species, perch (Perca fluviatilis) and vendace (Coregonus albula). Further, our aim was to develop and validate imaging Fourier-transform infrared spectroscopic method for the quantification of ingested microplastics. For this purpose, enzymatically digested samples were measured with focal plane array (FPA) based infrared microscope. Data was analyzed with siMPle software, which provides counts, mass estimations, sizes, and materials for the measured particles. Method validation was conducted with ten procedural blanks and recovery tests, resulting in 75% and 77% recovery rates for pretreatment and infrared imaging, respectively. Pretreatment caused contamination principally by small <100 μm microplastics. The results showed that 17% of perch and 25% of vendace had ingested plastic. Most of the fish contained little or no plastics, while some individuals contained high numbers of small particles or alternatively few large particles. Perch from one sampling site out of five had ingested microplastics, but vendace from all sampling sites had ingested microplastics. The microplastics found from fish were mostly small: 81% had particle size between 20 and 100 μm, and most of them were polyethylene, polypropylene, and polyethylene terephthalate. In conclusion, the implemented method revealed low numbers of ingested microplastics on average but needs further development for routine monitoring of small microplastics.