Browsing by Subject "multiple myeloma"

Sort by: Order: Results:

Now showing items 1-7 of 7
  • Miettinen, Juho; Kumari, Romika; Traustadottir, Gunnhildur Asta; Huppunen, Maiju-Emilia Anniina; Sergeev, Philipp; Majumder, Muntasir M.; Schepsky, Alexander; Gudjonsson, Thorarinn; Lievonen, Juha; Bazou, Despina; Dowling, Paul; O'Gorman, Peter; Slipicevic, Ana; Anttila, Pekka; Silvennoinen, Raija; Nupponen, Nina N.; Lehmann, Fredrik; Heckman, Caroline (2021)
    Multiple myeloma (MM) is characterized by extensive immunoglobulin production leading to an excessive load on protein homeostasis in tumor cells. Aminopeptidases contribute to proteolysis by catalyzing the hydrolysis of amino acids from proteins or peptides and function downstream of the ubiquitin–proteasome pathway. Notably, aminopeptidases can be utilized in the delivery of antibody and peptide-conjugated drugs, such as melflufen, currently in clinical trials. We analyzed the expression of 39 aminopeptidase genes in MM samples from 122 patients treated at Finnish cancer centers and 892 patients from the CoMMpass database. Based on ranked abundance, LAP3, ERAP2, METAP2, TTP2, and DPP7 were highly expressed in MM. ERAP2, XPNPEP1, DPP3, RNPEP, and CTSV were differentially expressed between relapsed/refractory and newly diagnosed MM samples (p < 0.05). Sensitivity to melflufen was detected ex vivo in 11/15 MM patient samples, and high sensitivity was observed, especially in relapsed/refractory samples. Survival analysis revealed that high expression of XPNPEP1, RNPEP, DPP3, and BLMH (p < 0.05) was associated with shorter overall survival. Hydrolysis analysis demonstrated that melflufen is a substrate for aminopeptidases LAP3, LTA4H, RNPEP, and ANPEP. The sensitivity of MM cell lines to melflufen was reduced by aminopeptidase inhibitors. These results indicate critical roles of aminopeptidases in disease progression and the activity of melflufen in MM.
  • Vento, Seija Inkeri; Vähämurto, Pauli; Silventoinen, Kaija; Karjalainen-Lindsberg, Marja-Liisa; Mannisto, Susanna; Leppa, Sirpa; Makitie, Antti Aarni (2017)
    Objectives: Extramedullary plasmacytoma in the sinonasal tract or nasopharynx is rare. The aim of the study was to review data on symptoms, clinical findings, treatment and follow-up of plasmacytomas in the sinonasal and nasopharyngeal regions in order to delineate the main clinical characteristics and the optimal management. Method: Twenty-five patients with sinonasal or nasopharyngeal plasmacytoma, diagnosed and treated at the Helsinki University Hospital during a 39-year period from 1975 to 2013 were retrospectively reviewed. Results: There were 18 males and 7 females with a median age of 66 years (range, 36-80). Sixty-eight percent received only radiotherapy or (chemo)radiotherapy. Forty-seven percent of them had a complete response to primary radiotherapy and one patient had a complete response after receiving additional brachytherapy. Four patients were treated primarily with surgery only. Two of them had a local recurrence, but were then successfully treated with radiotherapy. Altogether, four patients received a combination of surgery and (chemo)radiotherapy. Forty-four percent were alive with no evidence of disease after a median follow-up time of 78 months. Forty percent died of their disease and 16% died of other causes. Conclusions: Our study supports radiotherapy as a treatment of choice, but for small tumours surgery alone or in combination with radiotherapy may also be considered. Chinese abstract
  • Kumar, Ashwini; Adhikari, Sadiksha; Kankainen, Matti; Heckman, Caroline A. (2021)
    Simple Summary The wide variety of next-generation sequencing technologies requires thorough evaluation and understanding of their advantages and shortcomings of these different approaches prior to their implementation in a precision medicine setting. Here, we compared the performance of two DNA sequencing methods, whole-exome and linked-read exome sequencing, to detect large structural variants (SVs) and short variants in eight multiple myeloma (MM) patient cases. For three patient cases, matched tumor-normal samples were sequenced with both methods to compare somatic SVs and short variants. The methods' clinical relevance was also evaluated, and their sensitivity and specificity to detect MM-specific cytogenetic alterations and other short variants were measured. Thus, this study systematically demonstrates and evaluates the performance of whole-exome and linked-read exome sequencing technologies for detecting genetic alterations to aid in selecting the optimal method for clinical application. Linked-read sequencing was developed to aid the detection of large structural variants (SVs) from short-read sequencing efforts. We performed a systematic evaluation to determine if linked-read exome sequencing provides more comprehensive and clinically relevant information than whole-exome sequencing (WES) when applied to the same set of multiple myeloma patient samples. We report that linked-read sequencing detected a higher number of SVs (n = 18,455) than WES (n = 4065). However, linked-read predictions were dominated by inversions (92.4%), leading to poor detection of other types of SVs. In contrast, WES detected 56.3% deletions, 32.6% insertions, 6.7% translocations, 3.3% duplications and 1.2% inversions. Surprisingly, the quantitative performance assessment suggested a higher performance for WES (AUC = 0.791) compared to linked-read sequencing (AUC = 0.766) for detecting clinically validated cytogenetic alterations. We also found that linked-read sequencing detected more short variants (n = 704) compared to WES (n = 109). WES detected somatic mutations in all MM-related genes while linked-read sequencing failed to detect certain mutations. The comparison of somatic mutations detected using linked-read, WES and RNA-seq revealed that WES and RNA-seq detected more mutations than linked-read sequencing. These data indicate that WES outperforms and is more efficient than linked-read sequencing for detecting clinically relevant SVs and MM-specific short variants.
  • Gebraad, Arjen; Ohlsbom, Roope; Miettinen, Juho J.; Emeh, Promise; Pakarinen, Toni-Karri; Manninen, Mikko; Eskelinen, Antti; Kuismanen, Kirsi; Slipicevic, Ana; Lehmann, Fredrik; Nupponen, Nina N.; Heckman, Caroline A.; Miettinen, Susanna (2022)
    Mesenchymal stem/stromal cells (MSCs) are self-renewing and multipotent progenitors, which constitute the main cellular compartment of the bone marrow stroma. Because MSCs have an important role in the pathogenesis of multiple myeloma, it is essential to know if novel drugs target MSCs. Melflufen is a novel anticancer peptide-drug conjugate compound for patients with relapsed refractory multiple myeloma. Here, we studied the cytotoxicity of melflufen, melphalan and doxorubicin in healthy human bone marrow-derived MSCs (BMSCs) and how these drugs affect BMSC proliferation. We established co-cultures of BMSCs with MM.1S myeloma cells to see if BMSCs increase or decrease the cytotoxicity of melflufen, melphalan, bortezomib and doxorubicin. We evaluated how the drugs affect BMSC differentiation into adipocytes and osteoblasts and the BMSC-supported formation of vascular networks. Our results showed that BMSCs were more sensitive to melflufen than to melphalan. The cytotoxicity of melflufen in myeloma cells was not affected by the co-culture with BMSCs, as was the case for melphalan, bortezomib and doxorubicin. Adipogenesis, osteogenesis and BMSC-mediated angiogenesis were all affected by melflufen. Melphalan and doxorubicin affected BMSC differentiation in similar ways. The effects on adipogenesis and osteogenesis were not solely because of effects on proliferation, seen from the differential expression of differentiation markers normalized by cell number. Overall, our results indicate that melflufen has a significant impact on BMSCs, which could possibly affect therapy outcome.
  • Majumder, Muntasir Mamun; Silvennoinen, Raija; Anttila, Pekka; Tamborero, David; Eldfors, Samuli; Yadav, Bhagwan; Karjalainen, Riikka; Kuusanmaki, Heikki; Lievonen, Juha; Parsons, Alun; Suvela, Minna; Jantunen, Esa; Porkka, Kimmo; Heckman, Caroline A. (2017)
    Novel agents have increased survival of multiple myeloma (MM) patients, however high-risk and relapsed/refractory patients remain challenging to treat and their outcome is poor. To identify novel therapies and aid treatment selection for MM, we assessed the ex vivo sensitivity of 50 MM patient samples to 308 approved and investigational drugs. With the results we i) classified patients based on their ex vivo drug response profile; ii) identified and matched potential drug candidates to recurrent cytogenetic alterations; and iii) correlated ex vivo drug sensitivity to patient outcome. Based on their drug sensitivity profiles, MM patients were stratified into four distinct subgroups with varied survival outcomes. Patients with progressive disease and poor survival clustered in a drug response group exhibiting high sensitivity to signal transduction inhibitors. Del(17p) positive samples were resistant to most drugs tested with the exception of histone deacetylase and BCL2 inhibitors. Samples positive for t(4; 14) were highly sensitive to immunomodulatory drugs, proteasome inhibitors and several targeted drugs. Three patients treated based on the ex vivo results showed good response to the selected treatments. Our results demonstrate that ex vivo drug testing may potentially be applied to optimize treatment selection and achieve therapeutic benefit for relapsed/refractory MM.
  • Janssens, Rosanne; Lang, Tamika; Vallejo, Ana; Galinsky, Jayne; Plate, Ananda; Morgan, Kate; Cabezudo, Elena; Silvennoinen, Raija; Coriu, Daniel; Badelita, Sorina; Irimia, Ruxandra; Anttonen, Minna; Manninen, Riikka-Leena; Schoefs, Elise; Vandebroek, Martina; Vanhellemont, Anneleen; Delforge, Michel; Stevens, Hilde; Simoens, Steven; Huys, Isabelle (2021)
    Background: Investigational and marketed drugs for the treatment of multiple myeloma (MM) are associated with a range of characteristics and uncertainties regarding long term side-effects and efficacy. This raises questions about what matters most to patients living with this disease. This study aimed to understand which characteristics MM patients find most important, and hence should be included as attributes and levels in a subsequent quantitative preference survey among MM patients. Methods: This qualitative study involved: (i) a scoping literature review, (ii) discussions with MM patients (n = 24) in Belgium, Finland, Romania, and Spain using Nominal Group Technique, (iii) a qualitative thematic analysis including multi-stakeholder discussions. Results: MM patients voiced significant expectations and hopes that treatments would extend their lives and reduce their cancer signs and symptoms. Participants however raised concerns about life-threatening side-effects that could cause permanent organ damage. Bone fractures and debilitating neuropathic effects (such as chronic tingling sensations) were highlighted as major issues reducing patients' independence and mobility. Patients discussed the negative impact of the following symptoms and side-effects on their daily activities: thinking problems, increased susceptibility to infections, reduced energy, pain, emotional problems, and vision problems. MM patients were concerned with uncertainties regarding the durability of positive treatment outcomes, and the cause, severity, and duration of their symptoms and side-effects. Patients feared short-term positive treatment responses complicated by permanent, severe side-effects and symptoms. Conclusions: This study gained an in-depth understanding of the treatment and disease-related characteristics and types of attribute levels (severity, duration) that are most important to MM patients. Results from this study argue in favor of MM drug development and individual treatment decision-making that focuses not only on extending patients' lives but also on addressing those symptoms and side-effects that significantly impact MM patients' quality of life. This study underscores a need for transparent communication toward MM patients about MM treatment outcomes and uncertainties regarding their long-term efficacy and safety. Finally, this study may help drug developers and decision-makers understand which treatment outcomes and uncertainties are most important to MM patients and therefore should be incorporated in MM drug development, evaluation, and clinical practice.
  • Liu, Minxia; Wang, Yinyin; Miettinen, Juho J.; Kumari, Romika; Majumder, Muntasir Mamun; Tierney, Ciara; Bazou, Despina; Parsons, Alun; Suvela, Minna; Lievonen, Juha; Silvennoinen, Raija; Anttila, Pekka; Dowling, Paul; O’Gorman, Peter; Tang, Jing; Heckman, Caroline A. (2021)
    Despite several new therapeutic options, multiple myeloma (MM) patients experience multiple relapses and inevitably become refractory to treatment. Insights into drug resistance mechanisms may lead to the development of novel treatment strategies. The S100 family is comprised of 21 calcium binding protein members with 17 S100 genes located in the 1q21 region, which is commonly amplified in MM. Dysregulated expression of S100 family members is associated with tumor initiation, progression and inflammation. However, the relationship between the S100 family and MM pathogenesis and drug response is unknown. In this study, the roles of S100 members were systematically studied at the copy number, transcriptional and protein level with patients’ survival and drug response. Copy number analysis revealed a predominant pattern of gains occurring in S100 genes clustering in the 1q21 locus. In general, gains of genes encoding S100 family members associated with worse patient survival. However, S100 gene copy number and S100 gene expression did not necessarily correlate, and high expression of S100A4 associated with poor patient survival. Furthermore, integrated analysis of S100 gene expression and ex vivo drug sensitivity data showed significant negative correlation between expression of S100 family members (S100A8, S100A9, and S100A12) and sensitivity to some drugs used in current MM treatment, including proteasome inhibitors (bortezomib, carfilzomib, and ixazomib) and histone deacetylase inhibitor panobinostat. Combined proteomic and pharmacological data exhibited significant negative association of S100 members (S100A4, S100A8, and S100A9) with proteasome inhibitors and panobinostat. Clinically, the higher expression of S100A4 and S100A10 were significantly linked to shorter progression free survival in patients receiving carfilzomib-based therapy. The results indicate an association and highlight the potential functional importance of S100 members on chromosome 1q21 in the development of MM and resistance to established myeloma drugs, including proteasome inhibitors.