Browsing by Subject "multispectral laser scanning"

Sort by: Order: Results:

Now showing items 1-3 of 3
  • Junttila, Samuli; Sugano, Junko; Vastaranta, Mikko; Linnakoski, Riikka; Kaartinen, Harri; Kukko, Antero; Holopainen, Markus; Hyyppa, Hannu; Hyyppa, Juha (2018)
    Changing climate is increasing the amount and intensity of forest stress agents, such as drought, pest insects, and pathogens. Leaf water content, measured here in terms of equivalent water thickness (EWT), is an early indicator of tree stress that provides timely information about the health status of forests. Multispectral terrestrial laser scanning (MS-TLS) measures target geometry and reflectance simultaneously, providing spatially explicit reflectance information at several wavelengths. EWT and leaf internal structure affect leaf reflectance in the shortwave infrared region that can be used to predict EWT with MS-TLS. A second wavelength that is sensitive to leaf internal structure but not affected by EWT can be used to normalize leaf internal effects on the shortwave infrared region and improve the prediction of EWT. Here we investigated the relationship between EWT and laser intensity features using multisensor MS-TLS at 690, 905, and 1,550 nm wavelengths with both drought-treated and Endoconidiophora polonica inoculated Norway spruce seedlings to better understand how MS-TLS measurements can explain variation in EWT. In our study, a normalized ratio of two wavelengths at 905 and 1,550 nm and length of seedling explained 91% of the variation (R-2) in EWT as the respective prediction accuracy for EWT was 0.003 g/cm(2) in greenhouse conditions. The relation between EWT and the normalized ratio of 905 and 1,550 nm wavelengths did not seem sensitive to a decreased point density of the MS-TLS data. Based on our results, different EWTs in Norway spruce seedlings show different spectral responses when measured using MS-TLS. These results can be further used when developing EWT monitoring for improving forest health assessments.
  • Junttila, Samuli; Sugano, Junko; Vastaranta, Mikko; Linnakoski, Riikka; Kaartinen, Harri; Kukko, Antero; Holopainen, Markus; Hyyppä, Hannu; Hyyppä, Juha (Frontiers Reseach Foundation, 2018)
    Frontiers in Plant Science
    Changing climate is increasing the amount and intensity of forest stress agents, such as drought, pest insects, and pathogens. Leaf water content, measured here in terms of equivalent water thickness (EWT), is an early indicator of tree stress that provides timely information about the health status of forests. Multispectral terrestrial laser scanning (MS-TLS) measures target geometry and reflectance simultaneously, providing spatially explicit reflectance information at several wavelengths. EWT and leaf internal structure affect leaf reflectance in the shortwave infrared region that can be used to predict EWT with MS-TLS. A second wavelength that is sensitive to leaf internal structure but not affected by EWT can be used to normalize leaf internal effects on the shortwave infrared region and improve the prediction of EWT. Here we investigated the relationship between EWT and laser intensity features using multisensor MS-TLS at 690, 905, and 1,550 nm wavelengths with both drought-treated and Endoconidiophora polonica inoculated Norway spruce seedlings to better understand how MS-TLS measurements can explain variation in EWT. In our study, a normalized ratio of two wavelengths at 905 and 1,550 nm and length of seedling explained 91% of the variation (R2) in EWT as the respective prediction accuracy for EWT was 0.003 g/cm2 in greenhouse conditions. The relation between EWT and the normalized ratio of 905 and 1,550 nm wavelengths did not seem sensitive to a decreased point density of the MS-TLS data. Based on our results, different EWTs in Norway spruce seedlings show different spectral responses when measured using MS-TLS. These results can be further used when developing EWT monitoring for improving forest health assessments.
  • Yu, Xiaowei; Hyyppa, Juha; Litkey, Paula; Kaartinen, Harri; Vastaranta, Mikko; Holopainen, Markus (2017)
    This paper investigated the potential of multispectral airborne laser scanning (ALS) data for individual tree detection and tree species classification. The aim was to develop a single-sensor solution for forest mapping that is capable of providing species-specific information, required for forest management and planning purposes. Experiments were conducted using 1903 ground measured trees from 22 sample plots and multispectral ALS data, acquired with an Optech Titan scanner over a boreal forest, mainly consisting of Scots pine (Pinus Sylvestris), Norway spruce (Picea Abies), and birch (Betula sp.), in southern Finland. ALS-features used as predictors for tree species were extracted from segmented tree objects and used in random forest classification. Different combinations of features, including point cloud features, and intensity features of single and multiple channels, were tested. Among the field-measured trees, 61.3% were correctly detected. The best overall accuracy (OA) of tree species classification achieved for correctly-detected trees was 85.9% (Kappa = 0.75), using a point cloud and single-channel intensity features combination, which was not significantly different from the ones that were obtained either using all features (OA = 85.6%, Kappa = 0.75), or single-channel intensity features alone (OA = 85.4%, Kappa = 0.75). Point cloud features alone achieved the lowest accuracy, with an OA of 76.0%. Field-measured trees were also divided into four categories. An examination of the classification accuracy for four categories of trees showed that isolated and dominant trees can be detected with a detection rate of 91.9%, and classified with a high overall accuracy of 90.5%. The corresponding detection rate and accuracy were 81.5% and 89.8% for a group of trees, 26.4% and 79.1% for trees next to a larger tree, and 7.2% and 53.9% for trees situated under a larger tree, respectively. The results suggest that Channel 2 (1064 nm) contains more information for separating pine, spruce, and birch, followed by channel 1 (1550 nm) and channel 3 (532 nm) with an overall accuracy of 81.9%, 78.3%, and 69.1%, respectively. Our results indicate that the use of multispectral ALS data has great potential to lead to a single-sensor solution for forest mapping.