Browsing by Subject "neurovetenskap"

Sort by: Order: Results:

Now showing items 1-1 of 1
  • Boldt, Robert (Helsingin yliopisto, 2014)
    Hearing is a versatile sense allowing us, among other things, to avoid danger and engage in pleasurable discussions. The ease with which we follow a conversation in a noisy environment is astonishing. Study I in this thesis used functional magnetic resonance imaging to explore the large-scale organization of speech and non-speech sound processing during a naturalistic stimulus comprised of an audio drama. Two large-scale functional networks processed the audio drama; one processed only speech, the other processed both speech and non-speech sounds. Hearing is essential for blind subjects. Anatomical and functional changes in the brains of blind people allow them to experience a detailed auditory world, compensating for the lack of vision. Therefore, comparing early-blind subjects brains to those of sighted people during naturalistic stimuli reveals fundamental differences in brain organization. In Study II, naturalistic stimuli were employed to explore whether one of the most distinguishing traits of the auditory system the left-lateralized responses to speech changes following blindness. As expected, in sighted subjects, speech processing was left-hemisphere dominant. Curiously, the left-hemisphere dominance for speech was absent or even reversed in blind subjects. In early-blind people, the senses beyond vision are strained as they try to compensate for the loss of sight; on the other hand, the occipital cortices are devoid of normal visual information flow. Interestingly, in blind people, senses other than vision recruit the occipital cortex. Additional to changes in the occipital cortex, the sensory cortices devoted to touch and hearing change. Data presented here suggested more inter-subject variability in auditory and parietal areas in blind subjects compared with sighted subjects. The study suggested that the greater the inter-subject variability of the network, the greater the experience-dependent plasticity of that network. As the prefrontal areas display large inter-subject spatial variability, the activation of the prefrontal cortex varies greatly. The variable activation might partly explain why the top-down influences of the prefrontal cortex on tactile discrimination are not well understood. In the fourth study, anatomical variability was assessed on an individual level, and transcranial magnetic stimulation was targeted at individually-chosen prefrontal locations indicated in tactile processing. Stimulation of one out of two prefrontal cortex locations impaired the subjects ability to distinguish a single tactile pulse from paired pulses. Thus, the study suggested that tactile information is regulated by functionally specialized prefrontal subareas.