Browsing by Subject "neutrophils"

Sort by: Order: Results:

Now showing items 1-3 of 3
  • Bouti, Panagiota; Webbers, Steven D. S.; Fagerholm, Susanna C.; Alon, Ronen; Moser, Markus; Matlung, Hanke L.; Kuijpers, Taco W. (2021)
    Neutrophils are the most prevalent leukocytes in the human body. They have a pivotal role in the innate immune response against invading bacterial and fungal pathogens, while recent emerging evidence also demonstrates their role in cancer progression and anti-tumor responses. The efficient execution of many neutrophil effector responses requires the presence of beta 2 integrins, in particular CD11a/CD18 or CD11b/CD18 heterodimers. Although extensively studied at the molecular level, the exact signaling cascades downstream of beta 2 integrins still remain to be fully elucidated. In this review, we focus mainly on inside-out and outside-in signaling of these two beta 2 integrin members expressed on neutrophils and describe differences between various neutrophil stimuli with respect to integrin activation, integrin ligand binding, and the pertinent differences between mouse and human studies. Last, we discuss how integrin signaling studies could be used to explore the therapeutic potential of targeting beta 2 integrins and the intracellular signaling cascade in neutrophils in several, among other, inflammatory conditions in which neutrophil activity should be dampened to mitigate disease.
  • Oroojalian, Fatemeh; Beygi, Mohammad; Baradaran, Behzad; Mokhtarzadeh, Ahad; Shahbazi, Mohammad-Ali (2021)
    Nanotechnology has provided great opportunities for managing neoplastic conditions at various levels, from preventive and diagnostic to therapeutic fields. However, when it comes to clinical application, nanoparticles (NPs) have some limitations in terms of biological stability, poor targeting, and rapid clearance from the body. Therefore, biomimetic approaches, utilizing immune cell membranes, are proposed to solve these issues. For example, macrophage or neutrophil cell membrane coated NPs are developed with the ability to interact with tumor tissue to suppress cancer progression and metastasis. The functionality of these particles largely depends on the surface proteins of the immune cells and their preserved function during membrane extraction and coating process on the NPs. Proteins on the outer surface of immune cells can render a wide range of activities to the NPs, including prolonged blood circulation, remarkable competency in recognizing antigens for enhanced targeting, better cellular interactions, gradual drug release, and reduced toxicity in vivo. In this review, nano-based systems coated with immune cells-derived membranous layers, their detailed production process, and the applicability of these biomimetic systems in cancer treatment are discussed. In addition, future perspectives and challenges for their clinical translation are also presented.
  • Strandin, Tomas; Mäkelä, Satu; Mustonen, Jukka; Vaheri, Antti (2018)
    Hantaviruses cause hemorrhagic fever with renal syndrome (HFRS) and hantavirus cardiopulmonary syndrome (HCPS) in humans. Both diseases are considered to be immunologically mediated but the exact pathological mechanisms are still poorly understood. Neutrophils are considered the first line of defense against invading microbes but little is still known of their role in virus infections. We wanted to study the role of neutrophils in HFRS using blood and tissue samples obtained from Puumala hantavirus (PUUV)-infected patients. We found that neutrophil activation products myeloperoxidase and neutrophil elastase, together with interleukin-8 (the major neutrophil chemotactic factor in humans), are strongly elevated in blood of acute PUUV-HFRS and positively correlate with kidney dysfunction, the hallmark clinical finding of HFRS. These markers localized mainly in the tubulointerstitial space in the kidneys of PUUV-HFRS patients suggesting neutrophil activation to be a likely component of the general immune response toward hantaviruses. We also observed increased levels of circulating extracellular histones at the acute stage of the disease supporting previous findings of neutrophil extracellular trap formation in PUUV-HFRS. Mechanistically, we did not find evidence for direct PUUV-mediated activation of neutrophils but instead primary blood microvascular endothelial cells acquired a pro-inflammatory phenotype and promoted neutrophil degranulation in response to PUUV infection in vitro. These results suggest that neutrophils are activated by hantavirus-infected endothelial cells and may contribute to the kidney pathology which determines the severity of HFRS.